写在开头
最近想详细了解下dubbo负载均衡,本来想从网上找些资料辅助学习,没想到这些资料都是比较旧的,比如说dubbo负载均衡存在的一些问题,最新版本(2.7.0)的其实已经修复了。所以想着还是得自己详细看下源码,并写一下总结,一方面便于日后的回顾,同时也希望能够对大家有一些帮助。
正文开始
dubbo负载均衡,说白了就是从一堆的服务提供者之中,选择一个来处理消费者的服务请求。我们看下LoadBalance的接口类
@SPI(RandomLoadBalance.NAME)
public interface LoadBalance {
/**
* select one invoker in list.
*
* @param invokers invokers.
* @param url refer url
* @param invocation invocation.
* @return selected invoker.
*/
@Adaptive("loadbalance")
Invoker select(List> invokers, URL url, Invocation invocation) throws RpcException ;
}复制代码
从代码中看出,负载均衡主要是从服务提供者列表中,选择一个。这个接口有一个抽象类的实现。
public abstract class AbstractLoadBalance implements LoadBalance {
static int calculateWarmupWeight(int uptime, int warmup, int weight) {
int ww = (int) ((float) uptime / ((float) warmup / (float) weight));
return ww < 1 ? 1 : (ww > weight ? weight : ww);
}
@Override
public Invoker select(List> invokers, URL url, Invocation invocation) {
if (invokers == null || invokers.isEmpty()) {
return null;
}
if (invokers.size() == 1) { //当只有一个invoker时,直接返回
return invokers.get(0);
}
//选择一个invoker
return doSelect(invokers, url, invocation);
}
//具体的负载均衡策略由子类来实现
protected abstract Invoker doSelect(List> invokers, URL url, Invocation invocation) ;
//权重方法
protected int getWeight(Invoker> invoker, Invocation invocation) {
//如果有配置,直接读取配置
int weight = invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.WEIGHT_KEY, Constants.DEFAULT_WEIGHT);
if (weight > 0) {
long timestamp = invoker.getUrl().getParameter(Constants.REMOTE_TIMESTAMP_KEY, 0L);
if (timestamp > 0L) {
int uptime = (int) (System.currentTimeMillis() - timestamp);
int warmup = invoker.getUrl().getParameter(Constants.WARMUP_KEY, Constants.DEFAULT_WARMUP);
if (uptime > 0 && uptime < warmup) {
weight = calculateWarmupWeight(uptime, warmup, weight);
}
}
}
return weight;
}
}复制代码
这个抽象类很简单,主要就是额外增加了一个获取权重的方法。我们看下具体的实现类。
从截图中可以看出,dubbo的负载均衡一共有4种。分别为:
1、一致性hash ConsistentHashLoadBalance
2、最小活跃数 LeastActiveLoadBalance
3、随机 RandomLoadBalance
4、轮询 RoundRobinLoadBalance
本文讲下轮询,先来看下核心代码(后续用演示图来描述步骤)
public class RoundRobinLoadBalance extends AbstractLoadBalance {
public static final String NAME = "roundrobin";
private static int RECYCLE_PERIOD = 60000;
//这个类主要是记录每个提供者的权重信息
protected static class WeightedRoundRobin {
private int weight; //权重
private AtomicLong current = new AtomicLong(0); //每次获得执行机会后,权重值
private long lastUpdate; //暂时先忽略
public int getWeight() {
return weight;
}
public void setWeight(int weight) {
this.weight = weight;
current.set(0);
}
public long increaseCurrent() {
return current.addAndGet(weight);
}
public void sel(int total) {
current.addAndGet(-1 * total);
}
public long getLastUpdate() {
return lastUpdate;
}
public void setLastUpdate(long lastUpdate) {
this.lastUpdate = lastUpdate;
}
}
private ConcurrentMap> methodWeightMap = new ConcurrentHashMap>();
private AtomicBoolean updateLock = new AtomicBoolean();
/**
* get invoker addr list cached for specified invocation
*
* for unit test only
*
* @param invokers
* @param invocation
* @return
*/
protected Collection getInvokerAddrList(List> invokers, Invocation invocation) {
String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName();
Map map = methodWeightMap.get(key);
if (map != null) {
return map.keySet();
}
return null;
}
@Override
protected Invoker doSelect(List> invokers, URL url, Invocation invocation) {
//每一个方法对应自己的一套缓存(一个map)
String key = invokers.get(0).getUrl().getServiceKey() + "." + invocation.getMethodName();
//每个map中缓存着每个提供者对应的权重状态
ConcurrentMap map = methodWeightMap.get(key);
if (map == null) {
methodWeightMap.putIfAbsent(key, new ConcurrentHashMap());
map = methodWeightMap.get(key);
}
int totalWeight = 0;
long maxCurrent = Long.MIN_VALUE;
long now = System.currentTimeMillis();
Invoker selectedInvoker = null;
WeightedRoundRobin selectedWRR = null;
//循环服务提供者列表
for (Invoker invoker : invokers) {
String identifyString = invoker.getUrl().toIdentityString();
//获取服务提供者对应的权重状态
WeightedRoundRobin weightedRoundRobin = map.get(identifyString);
int weight = getWeight(invoker, invocation); //权重从配置中读取。没有配置默认相等
if (weight < 0) {
weight = 0;
}
//权重状态为空,则需要新建
if (weightedRoundRobin == null) {
weightedRoundRobin = new WeightedRoundRobin();
weightedRoundRobin.setWeight(weight);
map.putIfAbsent(identifyString, weightedRoundRobin);
weightedRoundRobin = map.get(identifyString);
}
if (weight != weightedRoundRobin.getWeight()) {
//weight changed 权重变更
weightedRoundRobin.setWeight(weight);
}
//每次循环,服务提供者的当前权重值都会加上权重值
long cur = weightedRoundRobin.increaseCurrent();
weightedRoundRobin.setLastUpdate(now);
//这个if代码主要是为了找到这组服务提供者列表中当前权重值最大的
if (cur > maxCurrent) {
maxCurrent = cur;
selectedInvoker = invoker;
selectedWRR = weightedRoundRobin;
}
totalWeight += weight; //一个循环结束,服务列表不变,这个总权重不会变
}
//这块是缓存数据的,大家细看下,不啰嗦了
if (!updateLock.get() && invokers.size() != map.size()) {
if (updateLock.compareAndSet(false, true)) {
try {
// copy -> modify -> update reference
ConcurrentMap newMap = new ConcurrentHashMap();
newMap.putAll(map);
Iterator> it = newMap.entrySet().iterator();
while (it.hasNext()) {
Entry item = it.next();
if (now - item.getValue().getLastUpdate() > RECYCLE_PERIOD) {
it.remove();
}
}
methodWeightMap.put(key, newMap);
} finally {
updateLock.set(false);
}
}
}
//这块也很关键,每次选定服务提供者后,会把这个服务提供者的当前权重值减去总权重
if (selectedInvoker != null) {
selectedWRR.sel(totalWeight);
return selectedInvoker;
}
// should not happen here
return invokers.get(0);
}
}复制代码
看代码还是不清晰?没关系,下面我画张图来表述下,还看不懂,你来打我。
假设有三个服务提供者A,B,C,权重分别为1:3:5 (相同权重不讲了,按列表顺序从前往后循环就行了)。
下面附上我的测试代码,结果和上图演示结果一致。
package loadbalance;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.atomic.AtomicBoolean;
import java.util.concurrent.atomic.AtomicLong;
/**
* @author linxiaohui
* @version 1.0 2018/12/17
* @since 1.0
*/
public class RoundRobinLoadBalance {
public static final String NAME = "roundrobin";
private static int RECYCLE_PERIOD = 60000;
protected static class WeightedRoundRobin {
private int weight;
private AtomicLong current = new AtomicLong(0);
private long lastUpdate;
public int getWeight() {
return weight;
}
public void setWeight(int weight) {
this.weight = weight;
current.set(0);
}
public long increaseCurrent() {
return current.addAndGet(weight);
}
public void sel(int total) {
current.addAndGet(-1 * total);
}
public long getLastUpdate() {
return lastUpdate;
}
public void setLastUpdate(long lastUpdate) {
this.lastUpdate = lastUpdate;
}
}
private ConcurrentMap> methodWeightMap = new ConcurrentHashMap>();
private AtomicBoolean updateLock = new AtomicBoolean();
public Invoker doSelect(List invokers) {
String key = invokers.get(0).getMethodKey();
ConcurrentMap map = methodWeightMap.get(key);
if (map == null) {
methodWeightMap.putIfAbsent(key, new ConcurrentHashMap());
map = methodWeightMap.get(key);
}
int totalWeight = 0;
long maxCurrent = Long.MIN_VALUE;
long now = System.currentTimeMillis();
Invoker selectedInvoker = null;
WeightedRoundRobin selectedWRR = null;
for (Invoker invoker : invokers) {
String identifyString = invoker.getUrlKey();
WeightedRoundRobin weightedRoundRobin = map.get(identifyString);
int weight = invoker.getWeight();
if (weight < 0) {
weight = 0;
}
if (weightedRoundRobin == null) {
weightedRoundRobin = new WeightedRoundRobin();
weightedRoundRobin.setWeight(weight);
map.putIfAbsent(identifyString, weightedRoundRobin);
weightedRoundRobin = map.get(identifyString);
}
if (weight != weightedRoundRobin.getWeight()) {
//weight changed
weightedRoundRobin.setWeight(weight);
}
long cur = weightedRoundRobin.increaseCurrent();
weightedRoundRobin.setLastUpdate(now);
if (cur > maxCurrent) {
maxCurrent = cur;
selectedInvoker = invoker;
selectedWRR = weightedRoundRobin;
}
totalWeight += weight;
}
if (!updateLock.get() && invokers.size() != map.size()) {
if (updateLock.compareAndSet(false, true)) {
try {
// copy -> modify -> update reference
ConcurrentMap newMap = new ConcurrentHashMap();
newMap.putAll(map);
Iterator> it = newMap.entrySet().iterator();
while (it.hasNext()) {
Map.Entry item = it.next();
if (now - item.getValue().getLastUpdate() > RECYCLE_PERIOD) {
it.remove();
}
}
methodWeightMap.put(key, newMap);
} finally {
updateLock.set(false);
}
}
}
if (selectedInvoker != null) {
selectedWRR.sel(totalWeight);
return selectedInvoker;
}
// should not happen here
return invokers.get(0);
}
public static void main(String[] args) {
List invokers = new LinkedList<>();
Invoker invoker = new Invoker("A", "dubbo://10.121.135.25:20880/DemoService/sayHello", "dubbo://10.121.135.25:20880/DemoService", 1);
Invoker invoker2 = new Invoker("B", "dubbo://10.121.135.26:20880/DemoService/sayHello", "dubbo://10.121.135.26:20880/DemoService", 3);
Invoker invoker3 = new Invoker("C", "dubbo://10.121.135.27:20880/DemoService/sayHello", "dubbo://10.121.135.27:20880/DemoService", 5);
invokers.add(invoker);
invokers.add(invoker2);
invokers.add(invoker3);
RoundRobinLoadBalance balance = new RoundRobinLoadBalance();
for (int i = 0; i < 10; i++) {
Invoker selectedInvoker = balance.doSelect(invokers);
System.out.println(selectedInvoker.getName() + " 方法权重:" + selectedInvoker.getWeight());
}
}
}复制代码
附上我模拟的服务提供者
package loadbalance;
/**
* @author linxiaohui
* @version 1.0 2018/12/17
* @since 1.0
*/
public class Invoker {
private String methodKey;
private Integer weight;
private String urlKey;
private String name;
public Invoker(String name, String methodKey, String urlKey, Integer weight) {
this.name = name;
this.methodKey = methodKey;
this.urlKey = urlKey;
this.weight = weight;
}
public String getMethodKey() {
return methodKey;
}
public void setMethodKey(String methodKey) {
this.methodKey = methodKey;
}
public Integer getWeight() {
return weight;
}
public void setWeight(Integer weight) {
this.weight = weight;
}
public String getUrlKey() {
return urlKey;
}
public void setUrlKey(String urlKey) {
this.urlKey = urlKey;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
}复制代码
测试结果图:
小结
目前网上的一些dubbo的源码分析文章都是基于比较旧的版本,最新版本的已经发生了变化。鉴于这个原因,我会在后续抽空把dubbo的一些源码阅读逐步分享给大家。最近项目忙成狗?,先写到这吧。