序
本文主要研究下FluxInterval的机制
FluxInterval
reactor-core-3.1.3.RELEASE-sources.jar!/reactor/core/publisher/FluxInterval.java
/**
* Periodically emits an ever increasing long value either via a ScheduledExecutorService
* or a custom async callback function
* @see Reactive-Streams-Commons
*/
final class FluxInterval extends Flux {
final Scheduler timedScheduler;
final long initialDelay;
final long period;
final TimeUnit unit;
FluxInterval(
long initialDelay,
long period,
TimeUnit unit,
Scheduler timedScheduler) {
if (period < 0L) {
throw new IllegalArgumentException("period >= 0 required but it was " + period);
}
this.initialDelay = initialDelay;
this.period = period;
this.unit = Objects.requireNonNull(unit, "unit");
this.timedScheduler = Objects.requireNonNull(timedScheduler, "timedScheduler");
}
@Override
public void subscribe(CoreSubscriber super Long> actual) {
Worker w = timedScheduler.createWorker();
IntervalRunnable r = new IntervalRunnable(actual, w);
actual.onSubscribe(r);
try {
w.schedulePeriodically(r, initialDelay, period, unit);
}
catch (RejectedExecutionException ree) {
if (!r.cancelled) {
actual.onError(Operators.onRejectedExecution(ree, r, null, null,
actual.currentContext()));
}
}
}
}
可以看到这里利用Scheduler来创建一个定时调度任务IntervalRunnable
IntervalRunnable
static final class IntervalRunnable implements Runnable, Subscription,
InnerProducer {
final CoreSubscriber super Long> actual;
final Worker worker;
volatile long requested;
static final AtomicLongFieldUpdater REQUESTED =
AtomicLongFieldUpdater.newUpdater(IntervalRunnable.class, "requested");
long count;
volatile boolean cancelled;
IntervalRunnable(CoreSubscriber super Long> actual, Worker worker) {
this.actual = actual;
this.worker = worker;
}
@Override
public CoreSubscriber super Long> actual() {
return actual;
}
@Override
@Nullable
public Object scanUnsafe(Attr key) {
if (key == Attr.CANCELLED) return cancelled;
return InnerProducer.super.scanUnsafe(key);
}
@Override
public void run() {
if (!cancelled) {
if (requested != 0L) {
actual.onNext(count++);
if (requested != Long.MAX_VALUE) {
REQUESTED.decrementAndGet(this);
}
} else {
cancel();
actual.onError(Exceptions.failWithOverflow("Could not emit tick " + count + " due to lack of requests" +
" (interval doesn't support small downstream requests that replenish slower than the ticks)"));
}
}
}
@Override
public void request(long n) {
if (Operators.validate(n)) {
Operators.addCap(REQUESTED, this, n);
}
}
@Override
public void cancel() {
if (!cancelled) {
cancelled = true;
worker.dispose();
}
}
}
这里重点看requested变量,run方法每次判断requested,如果requested为0则销毁worker,否则则每次发射一个元素计数就减一
而subscriber如果有继续request的话,则会增加requested的值
实例1
public static void main(String[] args) throws InterruptedException {
Flux flux = Flux.interval(Duration.ofMillis(1))
.doOnNext(e -> {
System.out.println(e);
}).doOnError(e -> e.printStackTrace());
System.out.println("begin to subscribe");
flux.subscribe(e -> {
System.out.println(e);
try {
TimeUnit.MINUTES.sleep(30);
} catch (InterruptedException e1) {
e1.printStackTrace();
}
});
TimeUnit.MINUTES.sleep(30);
}
这个例子requested是Long.MAX_VALUE,但是由于subscribe的线程跟运行interval的线程一样,由于里头执行了sleep操作也导致interval的调度也跟着阻塞住了。
实例2
public static void main(String[] args) throws InterruptedException {
Flux flux = Flux.interval(Duration.ofMillis(1))
.doOnNext(e -> {
System.out.println(e);
})
//NOTE 这里request prefetch=256个
.publishOn(Schedulers.newElastic("publish-thread"))
.doOnError(e -> e.printStackTrace());
System.out.println("begin to subscribe");
AtomicInteger count = new AtomicInteger(0);
//NOTE 得有subscribe才能触发request
flux.subscribe(e -> {
LOGGER.info("receive:{}",e);
try {
//NOTE 使用publishOn将subscribe与interval的线程分开
if(count.get() == 0){
TimeUnit.MINUTES.sleep(2);
}
count.incrementAndGet();
} catch (InterruptedException e1) {
e1.printStackTrace();
}
});
TimeUnit.MINUTES.sleep(30);
}
使用publishOn将subscriber线程与interval线程隔离,使其sleep不阻塞interval
这里publishOn隐含了一个prefetch参数,默认是Queues.SMALL_BUFFER_SIZE即Math.max(16,Integer.parseInt(System.getProperty("reactor.bufferSize.small", "256")));
public final Flux publishOn(Scheduler scheduler) {
return publishOn(scheduler, Queues.SMALL_BUFFER_SIZE);
}
final Flux publishOn(Scheduler scheduler, boolean delayError, int prefetch, int lowTide) {
if (this instanceof Callable) {
if (this instanceof Fuseable.ScalarCallable) {
@SuppressWarnings("unchecked")
Fuseable.ScalarCallable s = (Fuseable.ScalarCallable) this;
try {
return onAssembly(new FluxSubscribeOnValue<>(s.call(), scheduler));
}
catch (Exception e) {
//leave FluxSubscribeOnCallable defer exception call
}
}
@SuppressWarnings("unchecked")
Callable c = (Callable)this;
return onAssembly(new FluxSubscribeOnCallable<>(c, scheduler));
}
return onAssembly(new FluxPublishOn<>(this, scheduler, delayError, prefetch, lowTide, Queues.get(prefetch)));
}
这里使用Queues.get(prefetch)创建一个间接的队列来盛放元素
这个实例最后输出
//......
21:06:03.108 [publish-thread-2] INFO com.example.demo.FluxTest - receive:254
21:06:03.108 [publish-thread-2] INFO com.example.demo.FluxTest - receive:255
reactor.core.Exceptions$OverflowException: Could not emit tick 256 due to lack of requests (interval doesn't support small downstream requests that replenish slower than the ticks)
at reactor.core.Exceptions.failWithOverflow(Exceptions.java:215)
at reactor.core.publisher.FluxInterval$IntervalRunnable.run(FluxInterval.java:121)
at reactor.core.scheduler.PeriodicWorkerTask.call(PeriodicWorkerTask.java:59)
at reactor.core.scheduler.PeriodicWorkerTask.run(PeriodicWorkerTask.java:73)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511)
at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:308)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$301(ScheduledThreadPoolExecutor.java:180)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:294)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)
由于第一次request默认是256,之后在发射256个元素之后,subscriber没有跟上,导致interval的worker被cancel掉了,于是后续消费完256个元素之后,紧挨着就是OverflowException这个异常
小结
reactor本身并不依赖线程,只有interval,delayElements等方法才会创建线程。而reactor本身是观察者设计模式的扩展,采用push+backpressure模式,一开始调用subscribe方法就触发request N请求推送数据,之后publisher就onNext推送数据,直到complete或cancel。实例1是因为线程阻塞导致interval的onNext阻塞,实例2是interval被cancel掉导致flux关闭。