推荐两个算法文章:
基本算法:https://www.cnblogs.com/chengxiao/p/6194356.html
动态图的算法:https://www.cnblogs.com/onepixel/articles/7674659.html
希尔排序
归并算法
基数排序
桶排序
桶排序(Bucket Sort)的原理很简单,它是将数组分到有限数量的桶子里。
假设待排序的数组a中共有N个整数,并且已知数组a中数据的范围[0, MAX)。在桶排序时,创建容量为MAX的桶数组r,并将桶数组元素都初始化为0;将容量为MAX的桶数组中的每一个单元都看作一个"桶"。
在排序时,逐个遍历数组a,将数组a的值,作为"桶数组r"的下标。当a中数据被读取时,就将桶的值加1。例如,读取到数组a[3]=5,则将r[5]的值+1。
https://blog.csdn.net/crazygolf/article/details/40378255
计数排序
假设数序列中小于元素a的个数为n,则直接把a放到第n+1个位置上。当存在几个相同的元素时要做适当的调整,因为不能把所有的元素放到同一个位置上。计数排序假设输入的元素都是0到k之间的整数。
堆排序(二叉树)
堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆;或者每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆。
堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。首先简单了解下堆结构。
该数组从逻辑上讲就是一个堆结构,我们用简单的公式来描述一下堆的定义就是:
大顶堆:arr[i] >= arr[2i+1] && arr[i] >= arr[2i+2]
小顶堆:arr[i] <= arr[2i+1] && arr[i] <= arr[2i+2]
再简单总结下堆排序的基本思路:
a.将无需序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆;
b.将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
c.重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
二叉树排序
二叉树排序法借助了数据结构二叉排序树,二叉排序数满足三个条件:(1)若左子树不空,则左子树上所有结点的值均小于它的根结点的值; (2)若右子树不空,则右子树上所有结点的值均大于它的根结点的值; (3)左、右子树也分别为二叉排序树。根据这三个特点,用中序遍历二叉树得到的结果就是排序的结果。
二叉树排序法需要首先根据数据构建二叉排序树,然后中序遍历,排序时间复杂度为O(nlogn),构建二叉树需要额外的O(n)的存储空间,有相同的元素是可以设置排在后边的放在右子树,在中序变量的时候也会在后边,所以二叉树排序是稳定的。
排序的稳定性和复杂度
不稳定:
选择排序(selection sort)— O(n2)
快速排序(quicksort)— O(nlogn) 平均时间, O(n2) 最坏情况; 对于大的、乱序串列一般认为是最快的已知排序
堆排序 (heapsort)— O(nlogn)
希尔排序 (shell sort)— O(nlogn)
基数排序(radix sort)— O(n·k); 需要 O(n) 额外存储空间 (K为特征个数)
稳定:
插入排序(insertion sort)— O(n2)
冒泡排序(bubble sort) — O(n2)
归并排序 (merge sort)— O(n log n); 需要 O(n) 额外存储空间
二叉树排序(Binary tree sort) — O(nlogn); 需要 O(n) 额外存储空间
计数排序 (counting sort) — O(n+k); 需要 O(n+k) 额外存储空间,k为序列中Max-Min+1
桶排序 (bucket sort)— O(n); 需要 O(k) 额外存储空间
对称加密AES,非对称加密: ECC,消息摘要: MD5,数字签名:DSA
简单的加密设计: 用密钥对原文做 异或,置换,代换,移位
MD5将任意长度的“字节串”变换成一个128bit的大整数,并且它是一个不可逆的字符串变换算法
MD5还广泛用于加密和解密技术上,在很多操作系统中,用户的密码是以MD5值(或类似的其它算法)的方式保存的, 用户Login的时候,系统是把用户输入的密码计算成MD5值,然后再去和系统中保存的MD5值进行比较,而系统并不“知道”用户的密码是什么。
MD5主要用途:
1、对一段信息生成信息摘要,该摘要对该信息具有唯一性,可以作为数字签名。
2、用于验证文件的有效性(是否有丢失或损坏的数据),
3、对用户密码的加密,
4、在哈希函数中计算散列值
非对称加密: ECC(160位)或RSA(1024)
RSA加密算法
在谈RSA加密算法之前,我们需要先了解下两个专业名词,对称加密和非对称加密。
对称加密即:含有一个称为密钥的东西,在消息发送前使用密钥对消息进行加密,在对方收到消息之后,使用相同的密钥进行解密
非对称加密即:加密和解密使用不同的密钥的一类加密算法。这类加密算法通常有两个密钥A和B,使用密钥A加密数据得到的密文,只有密钥B可以进行解密操作(即使密钥A也无法解密),相反,使用了密钥B加密数据得到的密文,只有密钥A可以解密。这两个密钥分别称为私钥和公钥,顾名思义,私钥就是你个人保留,不能公开的密钥,而公钥则是公开给加解密操作的另一方的。根据不同用途,对数据进行加密所使用的密钥也不相同(有时用公钥加密,私钥解密;有时相反用私钥加密,公钥解密)。非对称加密的代表算法是RSA算法。
缺点 它产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密,分组长度太大等
DES加密
DES加密:使用一个 56 位的密钥以及附加的 8 位奇偶校验位,产生最大 64 位的分组大小。这是一个迭代的分组密码,使用称为 Feistel 的技术,其中将加密的文本块分成两半。使用子密钥对其中一半应用循环功能,然后将输出与另一半进行“异或”运算;接着交换这两半,这一过程会继续下去,但最后一个循环不交换。DES 使用 16 个循环,使用异或,置换,代换,移位操作四种基本运算。额专业术语就看看得了,下面直接给大家演示一个小demo,以帮助大家的理解。