- 数据分析-24-时间序列预测之基于keras的VMD-LSTM和VMD-CNN-LSTM预测风速
皮皮冰燃
数据分析数据分析
文章目录1普通的LSTM模型1.1数据重采样1.2数据标准化1.3切分窗口1.4划分数据集1.5建立模型1.6预测效果2VMD-LSTM模型2.1VMD分解时间序列2.2对每一个IMF建立LSTM模型2.2.1IMF1—LSTM2.2.2IMF2-LSTM2.2.3统一代码2.3评估效果3CNN-LSTM模型3.1数据预处理3.2建立模型3.3效果预测4VMD-CNN-LSTM模型4.1VMD分解
- 【NLP5-RNN模型、LSTM模型和GRU模型】
一蓑烟雨紫洛
nlprnnlstmgrunlp
RNN模型、LSTM模型和GRU模型1、什么是RNN模型RNN(RecurrentNeuralNetwork)中文称为循环神经网络,它一般以序列数据为输入,通过网络内部的结构设计有效捕捉序列之间的关系特征,一般也是以序列形式进行输出RNN的循环机制使模型隐层上一时间步产生的结果,能够作为当下时间步输入的一部分(当下时间步的输入除了正常的输入外还包括上一步的隐层输出)对当下时间步的输出产生影响2、R
- 探索深度学习的奥秘:从理论到实践的奇幻之旅
小周不想卷
深度学习
目录引言:穿越智能的迷雾一、深度学习的奇幻起源:从感知机到神经网络1.1感知机的启蒙1.2神经网络的诞生与演进1.3深度学习的崛起二、深度学习的核心魔法:神经网络架构2.1前馈神经网络(FeedforwardNeuralNetwork,FNN)2.2卷积神经网络(CNN)2.3循环神经网络(RNN)及其变体(LSTM,GRU)2.4生成对抗网络(GAN)三、深度学习的魔法秘籍:算法与训练3.1损失
- 一维数组 list 呢 ,怎么转换成 (批次 句子长度 特征值 )三维向量 python pytorch lstm 编程 人工智能
zhangfeng1133
pythonpytorch人工智能数据挖掘
一、介绍对于一维数组,如果你想将其转换成适合深度学习模型(如LSTM)输入的格式,你需要考虑将其扩展为三维张量。这通常涉及到批次大小(batchsize)、序列长度(sequencelength)和特征数量(numberoffeatures)的维度。以下是如何将一维数组转换为这种格式的步骤:###1.确定维度-**批次大小(BatchSize)**:这是你一次处理的样本数量。-**序列长度(Seq
- 使用LSTM(长短期记忆网络)模型预测股票价格的实例分析
eeee~~
深度学习lstm人工智能rnn金融python神经网络
一:LSTM与RNN的区别LSTM(LongShort-TermMemory)是一种特殊的循环神经网络(RNN)架构。LSTM是为了解决传统RNN在处理长序列数据时遇到的梯度消失或梯度爆炸问题而设计的。在传统的RNN中,信息通过隐藏状态在时间步之间传递,但由于权重的重复应用,随着时间的推移,梯度可能会迅速减小或增大,导致网络难以学习长期依赖关系。LSTM通过引入了一种称为“门”(gates)的机制
- 《自然语言处理 Transformer 模型详解》
黑色叉腰丶大魔王
自然语言处理transformer人工智能
一、引言在自然语言处理领域,Transformer模型的出现是一个重大的突破。它摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN)架构,完全基于注意力机制,在机器翻译、文本生成、问答系统等众多任务中取得了卓越的性能。本文将深入讲解Transformer模型的原理、结构和应用。二、Transformer模型的背景在Transformer出现之前,RNN及其变体(如LSTM和GRU)是自然语言
- 深度学习特征提取魔改版太强了!发文香饽饽!
深度之眼
深度学习干货人工智能干货人工智能深度学习机器学习论文特征提取
要说CV领域经久不衰的研究热点,特征提取可以占一席,毕竟SLAM、三维重建等重要应用的底层都离不开它。再加上近几年深度学习兴起,用深度学习做特征提取逐渐成了主流,比传统算法无论是性能、准确性还是效率都更胜一筹。目前比较常见的深度学习特征提取方法有基于transformer、基于CNN、基于LSTM以及基于GAN,都发展的比较成熟。但为了追求更快速、准确、鲁棒的特征点提取,研究者们开始致力于改进深度
- 详解DDPG(附pytorch代码)
还有你Y
机器学习深度学习强化学习pytorch深度学习机器学习
目录(1)策略网络的更新(2)更新(3)NormalizedActions(代码中的)(4)详解DDPG和AC算法区别!!!(5)详解DDPG和AC的目标网络(6)其他(6)代码(8)OUNoise(Ornstein-UhlenbeckNoise)(9)DDPG解决离散动作问题(1)策略网络的更新为了最大化策略网络输出的动作在值函数网络中的Q值。DDPG的目标是让策略网络输出的动作能够最大化Q值,
- 预训练语言模型的前世今生 - 从Word Embedding到BERT
脚步的影子
语言模型embeddingbert
目录一、预训练1.1图像领域的预训练1.2预训练的思想二、语言模型2.1统计语言模型2.2神经网络语言模型三、词向量3.1独热(Onehot)编码3.2WordEmbedding四、Word2Vec模型五、自然语言处理的预训练模型六、RNN和LSTM6.1RNN6.2RNN的梯度消失问题6.3LSTM6.4LSTM解决RNN的梯度消失问题七、ELMo模型7.1ELMo的预训练7.2ELMo的Fea
- 第R3周:天气预测
Jessica2017lj
python
本文为[365天深度学习训练营]中的学习记录博客参考文章:第R3周:LSTM-火灾温度预测(训练营内部可读)作者:[K同学啊]任务说明:该数据集提供了来自澳大利亚许多地点的大约10年的每日天气观测数据。你需要做的是根据这些数据对RainTomorrow进行一个预测,这次任务任务与以往的不同,我增加了探索式数据分析(EDA),希望这部分内容可以帮助到大家。我的环境:●语言环境:Python3.8●编
- Python知识点:如何使用Python进行时间序列预测
杰哥在此
Python系列python开发语言编程面试
使用Python进行时间序列预测是一个非常常见的任务,可以应用于各种领域,如金融市场预测、销售量预测、天气预报等。时间序列预测的方法有很多,包括统计方法(如ARIMA模型)、机器学习方法(如支持向量机、决策树)、以及深度学习方法(如LSTM网络)。下面是一个简单的时间序列预测流程示例,使用Python和pandas、numpy、以及statsmodels库来实现ARIMA模型的时间序列预测。1.导
- 深度学习基础之循环神经网络
Ctrl+CV九段手
机器学习和深度学习rnn深度学习神经网络人工智能机器学习学习
目录基本概念与特点定义与工作原理结构组成应用领域自然语言处理语音识别时间序列分析优缺点优点缺点改进方法总结循环神经网络在自然语言处理中的最新应用和研究进展是什么?长短期记忆网络(LSTM)与门控循环单元(GRU)在解决梯度消失和爆炸问题上的具体差异和优势是什么?LSTM的结构与优势GRU的结构与优势具体差异门的数量:计算复杂度:性能对比:总结双向循环神经网络如何增强模型的上下文捕捉能力,与单向RN
- 02 使用 LSTM 进行时间序列预测
柒 魅。
时间序列预测lstm人工智能rnn
深度学习入门:使用LSTM进行时间序列预测引言深度学习在时间序列预测中展现出了强大的能力,尤其是长短期记忆(LSTM)网络。本文将为深度学习初学者介绍如何使用LSTM网络进行时间序列预测。我们将从基础知识讲起,提供代码示例,并解释每一步的技术细节。希望通过本文,大家能对LSTM有一个初步的了解,并能够在自己的项目中应用。1.什么是LSTM?LSTM(长短期记忆网络)是一种特殊的递归神经网络(RNN
- 计算机毕业设计hadoop+spark知识图谱房源推荐系统 房价预测系统 房源数据分析 房源可视化 房源大数据大屏 大数据毕业设计 机器学习
计算机毕业设计大全
创新点:1.支付宝沙箱支付2.支付邮箱通知(JavaMail)3.短信验证码修改密码4.知识图谱5.四种推荐算法(协同过滤基于用户、物品、SVD混合神经网络、MLP深度学习模型)6.线性回归算法预测房价7.Python爬虫采集链家数据8.AI短信识别9.百度地图API10.lstm情感分析11.spark大屏可视化开发技术:springbootvue.jspythonechartssparkmys
- Python深度学习(使用 LSTM 生成文本)--学习笔记(十八)
呆萌的小透明
深度学习神经网络深度学习
第8章生成式深度学习人工智能模拟人类思维过程的可能性,并不局限于被动性任务(比如目标识别)和大多数反应性任务(比如驾驶汽车),它还包括创造性活动。的确,到目前为止,我们见到的人工智能艺术作品的水平还很低。人工智能还远远比不上人类编剧、画家和作曲家。但是,替代人类始终都不是我们要谈论的主题,人工智能不会替代我们自己的智能,而是会为我们的生活和工作带来更多的智能,即另一种类型的智能。在许多领域,特别是
- LSTM与文本生成
Jiang_Immortals
人工智能lstm人工智能rnn
当使用Python和Keras构建LSTM模型时,可以按照以下步骤进行简单的文本生成:准备数据集:首先,将文本数据集进行预处理,例如分词、去除标点符号、将文本转换为小写等。创建一个词汇表,将每个唯一的单词映射到一个整数值,以便进行向量化。将文本序列划分为输入序列和目标序列。例如,对于句子“IloveAI”,输入序列是“Ilove”,目标序列是“AI”。构建LSTM模型:导入必要的库,如Keras和
- 【没发表过的创新点】基于BiTCN-LSTM的风电功率预测研究(Matlab代码实现)
荔枝科研社
lstmmatlab人工智能
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、研究背景与意义二、BiTCN-LSTM模型概述三、基于BiTCN-LSTM的风电功率预测模型构建四、研究优势与挑战优势:挑战:五、未来展望2运行结果3参考文献4Matlab代码、数据⛳️赠与读者做科研,涉及到一个深在的思想系统,需要科研者逻辑缜
- 自然语言处理--Keras 实现LSTM生成文本
糯米君_
自然语言处理python深度学习nlplstm生成文本
令人兴奋的是,基于上一篇《keras实现LSTM字符级建模》的原理,使用LSTM我们可以根据之前文档出现过的字符来预测下一个字符,并且根据训练数据文本的特定的“风格”或“看法”生成新的文本。这很有趣,但我们将选择一个风格独特的人——威廉·莎士比亚(WilliamShakespeare),现根据他现有的作品来生成乍一看都有点儿像莎士比亚的作品的文本。fromnltk.corpusimportgute
- CNN+LSTM小目标物体追踪检测实现 完整代码数据可直接运行
计算机毕设论文
计算机毕设实战100例cnn人工智能深度学习小目标物体追踪追踪检测
视频讲解:CNN+LSTM小目标物体追踪检测实现_哔哩哔哩_bilibili项目效果:完整代码:importnumpyasnpimporttensorflowastffromtensorflow.keras.layersimportConv2D,MaxPooling2D,Flatten,LSTM,D
- 时间旅行者:LSTM算法的奥秘大揭秘!
风清扬雨
lstm算法人工智能
Hey小伙伴们,今天给大家带来一个超级有趣的主题——LSTM算法的基本结构和公式推导!项目背景你知道吗?在时间序列预测中,传统的神经网络很难处理长距离的依赖关系。但是,有一种神奇的神经网络叫做LSTM(LongShort-TermMemory),它就像是时间旅行者一样,可以记住很久以前的信息!时间旅行听起来很酷吧?那我们就来一起探索一下LSTM的世界吧!原理解析1️⃣什么是LSTM?LSTM是一种
- 【LSTM分类】基于贝叶斯优化卷积神经网络结合长短时记忆BO-CNN-LSTM实现柴油机故障诊断含Matlab源码
matlab科研助手
lstm分类cnn
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机物理应用机器学习内容介绍柴油机作为重要的动力设备,其运行状态的可靠性直接影响着生产效率和安全。及时准确地诊断柴
- 《BERT基础教程:Transformer大模型实战》读书笔记
johnny233
读书笔记人工智能
概念BERT,BidirectionalEncoderRepresentationsfromTransformers,多Transformer的双向编码器表示法。RNN,recurrentneuralnetwork,循环神经网络。LSTM,longshort-termmemory,长短期记忆网络。NLI,Naturallanguageinference,自然语言推理。知识蒸馏(knowledged
- EI级 | Matlab实现TCN-LSTM-MATT、TCN-LSTM、TCN、LSTM多变量时间序列预测对比
天天Matlab代码科研顾问
matlablstm开发语言
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机内容介绍风电作为一种清洁、可再生能源,近年来得到了快速发展。准确预测风电功率输出对于提高风电场运行效率,优化电
- 自己设计一个Transformer模型
郑不凡
transformer自然语言处理机器翻译
Transformer模型在2017年被Google提出,直接基于self-attention结构,不再依赖于RNN、LSTM或者CNN,是一种Seg2Seg模型。近些年提出了许多基于Transformer的模型,有学者甚至将这一类模型称为基础模型。该模型的原始论文为AttentionIsAllYouNeed。0.如何设计Transformer阅读该部分需要有Attention基础Transfor
- 基于CNN-BiLSTM-Adaboost风电功率预测研究(Matlab代码实现)
创新优化代码学习
cnnmatlab人工智能
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述一、研究背景与意义二、研究方法1.数据准备与预处理2.CNN特征提取3.BiLSTM序列建模4.Adaboost集成学习5.模型训练与评估三、研究优势四、未来展望2运行结果3参考文献4Matlab代码、数据⛳️赠与读者做科研,涉及到一个深在的思想系
- 【ShuQiHere】用类来实现LSTM:让你的模型拥有更强的记忆力
ShuQiHere
代码武士的机器学习秘传lstm人工智能
【ShuQiHere】欢迎回到ShuQiHere!今天我们要来聊一聊LSTM(LongShort-TermMemory),一种非常流行的循环神经网络(RNN)变种。LSTM以其卓越的记忆能力和处理长序列数据的强大性能而闻名。今天,我们将用类的方式来实现LSTM,并将其应用于手写数字识别任务中。1.什么是LSTM?LSTM是一种特殊的RNN,它通过引入“门”的机制,能够更好地捕捉长时间跨度的依赖关系
- Kesci:Tensorflow 实现 LSTM——时间序列预测
萧居士
TensorflowLSTM时间序列预测
LSTMhttps://www.kesci.com/home/project/5a38a9c00e1fc52691fd9c72这篇文章将讲解如何使用lstm进行时间序列方面的预测,重点讲lstm的应用,原理部分可参考以下两篇文章:UnderstandingLSTMNetworksLSTM学习笔记编程环境:python3.7,tensorflow1.14本文所用的数据集来自于kesci平台,由云脑机
- 【LSTM回归预测】遗传算法优化注意力机制的长短时记忆神经网络GA-attention-LSTM数据回归预测【含Matlab源码 3738期】
Matlab领域
matlab
⛄一、遗传算法优化注意力机制的长短时记忆神经网络GA-attention-LSTM数据回归预测风力发电是一种清洁能源,越来越受到人们的关注和重视。然而,由于风力发电的不稳定性和不可控性,风电预测成为了一个至关重要的问题。为了更精准地预测风电发电量,许多研究者开始尝试利用深度学习技术来进行风电预测。在本文中,我们将介绍一种基于遗传优化注意力机制的长短时记忆神经网络(GA-attention-LSTM
- 回归预测|基于鲸鱼优化WOA-Transformer-BiLSTM组合模型的数据回归预测Matlab程序多特征输入单输出
机器不会学习CL
时间序列预测智能优化算法回归transformermatlab
回归预测|基于鲸鱼优化WOA-Transformer-BiLSTM组合模型的数据回归预测Matlab程序多特征输入单输出文章目录前言时序预测|基于鲸鱼优化WOA-Transformer-BiLSTM组合模型的数据时序预测Matlab程序多特征输入单输出一、WOA-Transformer-BiLSTM模型1.鲸鱼优化算法(WOA)2.Transformer3.双向长短期记忆网络(BiLSTM)4.模
- 时序预测|基于变分模态分解-时域卷积-双向长短期记忆-注意力机制多变量时间序列预测VMD-TCN-BiLSTM-Attention
机器不会学习CL
时间序列预测智能优化算法深度学习人工智能机器学习
时序预测|基于变分模态分解-时域卷积-双向长短期记忆-注意力机制多变量时间序列预测VMD-TCN-BiLSTM-Attention文章目录前言时序预测|基于变分模态分解-时域卷积-双向长短期记忆-注意力机制多变量时间序列预测VMD-TCN-BiLSTM-Attention一、VMD-TCN-BiLSTM-Attention模型VMD-TCN-BiLSTM-Attention模型的详细原理和流程1.
- 解读Servlet原理篇二---GenericServlet与HttpServlet
周凡杨
javaHttpServlet源理GenericService源码
在上一篇《解读Servlet原理篇一》中提到,要实现javax.servlet.Servlet接口(即写自己的Servlet应用),你可以写一个继承自javax.servlet.GenericServletr的generic Servlet ,也可以写一个继承自java.servlet.http.HttpServlet的HTTP Servlet(这就是为什么我们自定义的Servlet通常是exte
- MySQL性能优化
bijian1013
数据库mysql
性能优化是通过某些有效的方法来提高MySQL的运行速度,减少占用的磁盘空间。性能优化包含很多方面,例如优化查询速度,优化更新速度和优化MySQL服务器等。本文介绍方法的主要有:
a.优化查询
b.优化数据库结构
- ThreadPool定时重试
dai_lm
javaThreadPoolthreadtimertimertask
项目需要当某事件触发时,执行http请求任务,失败时需要有重试机制,并根据失败次数的增加,重试间隔也相应增加,任务可能并发。
由于是耗时任务,首先考虑的就是用线程来实现,并且为了节约资源,因而选择线程池。
为了解决不定间隔的重试,选择Timer和TimerTask来完成
package threadpool;
public class ThreadPoolTest {
- Oracle 查看数据库的连接情况
周凡杨
sqloracle 连接
首先要说的是,不同版本数据库提供的系统表会有不同,你可以根据数据字典查看该版本数据库所提供的表。
select * from dict where table_name like '%SESSION%';
就可以查出一些表,然后根据这些表就可以获得会话信息
select sid,serial#,status,username,schemaname,osuser,terminal,ma
- 类的继承
朱辉辉33
java
类的继承可以提高代码的重用行,减少冗余代码;还能提高代码的扩展性。Java继承的关键字是extends
格式:public class 类名(子类)extends 类名(父类){ }
子类可以继承到父类所有的属性和普通方法,但不能继承构造方法。且子类可以直接使用父类的public和
protected属性,但要使用private属性仍需通过调用。
子类的方法可以重写,但必须和父类的返回值类
- android 悬浮窗特效
肆无忌惮_
android
最近在开发项目的时候需要做一个悬浮层的动画,类似于支付宝掉钱动画。但是区别在于,需求是浮出一个窗口,之后边缩放边位移至屏幕右下角标签处。效果图如下:
一开始考虑用自定义View来做。后来发现开线程让其移动很卡,ListView+动画也没法精确定位到目标点。
后来想利用Dialog的dismiss动画来完成。
自定义一个Dialog后,在styl
- hadoop伪分布式搭建
林鹤霄
hadoop
要修改4个文件 1: vim hadoop-env.sh 第九行 2: vim core-site.xml <configuration> &n
- gdb调试命令
aigo
gdb
原文:http://blog.csdn.net/hanchaoman/article/details/5517362
一、GDB常用命令简介
r run 运行.程序还没有运行前使用 c cuntinue 
- Socket编程的HelloWorld实例
alleni123
socket
public class Client
{
public static void main(String[] args)
{
Client c=new Client();
c.receiveMessage();
}
public void receiveMessage(){
Socket s=null;
BufferedRea
- 线程同步和异步
百合不是茶
线程同步异步
多线程和同步 : 如进程、线程同步,可理解为进程或线程A和B一块配合,A执行到一定程度时要依靠B的某个结果,于是停下来,示意B运行;B依言执行,再将结果给A;A再继续操作。 所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回,同时其它线程也不能调用这个方法
多线程和异步:多线程可以做不同的事情,涉及到线程通知
&
- JSP中文乱码分析
bijian1013
javajsp中文乱码
在JSP的开发过程中,经常出现中文乱码的问题。
首先了解一下Java中文问题的由来:
Java的内核和class文件是基于unicode的,这使Java程序具有良好的跨平台性,但也带来了一些中文乱码问题的麻烦。原因主要有两方面,
- js实现页面跳转重定向的几种方式
bijian1013
JavaScript重定向
js实现页面跳转重定向有如下几种方式:
一.window.location.href
<script language="javascript"type="text/javascript">
window.location.href="http://www.baidu.c
- 【Struts2三】Struts2 Action转发类型
bit1129
struts2
在【Struts2一】 Struts Hello World http://bit1129.iteye.com/blog/2109365中配置了一个简单的Action,配置如下
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configurat
- 【HBase十一】Java API操作HBase
bit1129
hbase
Admin类的主要方法注释:
1. 创建表
/**
* Creates a new table. Synchronous operation.
*
* @param desc table descriptor for table
* @throws IllegalArgumentException if the table name is res
- nginx gzip
ronin47
nginx gzip
Nginx GZip 压缩
Nginx GZip 模块文档详见:http://wiki.nginx.org/HttpGzipModule
常用配置片段如下:
gzip on; gzip_comp_level 2; # 压缩比例,比例越大,压缩时间越长。默认是1 gzip_types text/css text/javascript; # 哪些文件可以被压缩 gzip_disable &q
- java-7.微软亚院之编程判断俩个链表是否相交 给出俩个单向链表的头指针,比如 h1 , h2 ,判断这俩个链表是否相交
bylijinnan
java
public class LinkListTest {
/**
* we deal with two main missions:
*
* A.
* 1.we create two joined-List(both have no loop)
* 2.whether list1 and list2 join
* 3.print the join
- Spring源码学习-JdbcTemplate batchUpdate批量操作
bylijinnan
javaspring
Spring JdbcTemplate的batch操作最后还是利用了JDBC提供的方法,Spring只是做了一下改造和封装
JDBC的batch操作:
String sql = "INSERT INTO CUSTOMER " +
"(CUST_ID, NAME, AGE) VALUES (?, ?, ?)";
- [JWFD开源工作流]大规模拓扑矩阵存储结构最新进展
comsci
工作流
生成和创建类已经完成,构造一个100万个元素的矩阵模型,存储空间只有11M大,请大家参考我在博客园上面的文档"构造下一代工作流存储结构的尝试",更加相信的设计和代码将陆续推出.........
竞争对手的能力也很强.......,我相信..你们一定能够先于我们推出大规模拓扑扫描和分析系统的....
- base64编码和url编码
cuityang
base64url
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.io.UnsupportedEncodingException;
- web应用集群Session保持
dalan_123
session
关于使用 memcached 或redis 存储 session ,以及使用 terracotta 服务器共享。建议使用 redis,不仅仅因为它可以将缓存的内容持久化,还因为它支持的单个对象比较大,而且数据类型丰富,不只是缓存 session,还可以做其他用途,一举几得啊。1、使用 filter 方法存储这种方法比较推荐,因为它的服务器使用范围比较多,不仅限于tomcat ,而且实现的原理比较简
- Yii 框架里数据库操作详解-[增加、查询、更新、删除的方法 'AR模式']
dcj3sjt126com
数据库
public function getMinLimit () { $sql = "..."; $result = yii::app()->db->createCo
- solr StatsComponent(聚合统计)
eksliang
solr聚合查询solr stats
StatsComponent
转载请出自出处:http://eksliang.iteye.com/blog/2169134
http://eksliang.iteye.com/ 一、概述
Solr可以利用StatsComponent 实现数据库的聚合统计查询,也就是min、max、avg、count、sum的功能
二、参数
- 百度一道面试题
greemranqq
位运算百度面试寻找奇数算法bitmap 算法
那天看朋友提了一个百度面试的题目:怎么找出{1,1,2,3,3,4,4,4,5,5,5,5} 找出出现次数为奇数的数字.
我这里复制的是原话,当然顺序是不一定的,很多拿到题目第一反应就是用map,当然可以解决,但是效率不高。
还有人觉得应该用算法xxx,我是没想到用啥算法好...!
还有觉得应该先排序...
还有觉
- Spring之在开发中使用SpringJDBC
ihuning
spring
在实际开发中使用SpringJDBC有两种方式:
1. 在Dao中添加属性JdbcTemplate并用Spring注入;
JdbcTemplate类被设计成为线程安全的,所以可以在IOC 容器中声明它的单个实例,并将这个实例注入到所有的 DAO 实例中。JdbcTemplate也利用了Java 1.5 的特定(自动装箱,泛型,可变长度
- JSON API 1.0 核心开发者自述 | 你所不知道的那些技术细节
justjavac
json
2013年5月,Yehuda Katz 完成了JSON API(英文,中文) 技术规范的初稿。事情就发生在 RailsConf 之后,在那次会议上他和 Steve Klabnik 就 JSON 雏形的技术细节相聊甚欢。在沟通单一 Rails 服务器库—— ActiveModel::Serializers 和单一 JavaScript 客户端库——&
- 网站项目建设流程概述
macroli
工作
一.概念
网站项目管理就是根据特定的规范、在预算范围内、按时完成的网站开发任务。
二.需求分析
项目立项
我们接到客户的业务咨询,经过双方不断的接洽和了解,并通过基本的可行性讨论够,初步达成制作协议,这时就需要将项目立项。较好的做法是成立一个专门的项目小组,小组成员包括:项目经理,网页设计,程序员,测试员,编辑/文档等必须人员。项目实行项目经理制。
客户的需求说明书
第一步是需
- AngularJs 三目运算 表达式判断
qiaolevip
每天进步一点点学习永无止境众观千象AngularJS
事件回顾:由于需要修改同一个模板,里面包含2个不同的内容,第一个里面使用的时间差和第二个里面名称不一样,其他过滤器,内容都大同小异。希望杜绝If这样比较傻的来判断if-show or not,继续追究其源码。
var b = "{{",
a = "}}";
this.startSymbol = function(a) {
- Spark算子:统计RDD分区中的元素及数量
superlxw1234
sparkspark算子Spark RDD分区元素
关键字:Spark算子、Spark RDD分区、Spark RDD分区元素数量
Spark RDD是被分区的,在生成RDD时候,一般可以指定分区的数量,如果不指定分区数量,当RDD从集合创建时候,则默认为该程序所分配到的资源的CPU核数,如果是从HDFS文件创建,默认为文件的Block数。
可以利用RDD的mapPartitionsWithInd
- Spring 3.2.x将于2016年12月31日停止支持
wiselyman
Spring 3
Spring 团队公布在2016年12月31日停止对Spring Framework 3.2.x(包含tomcat 6.x)的支持。在此之前spring团队将持续发布3.2.x的维护版本。
请大家及时准备及时升级到Spring
- fis纯前端解决方案fis-pure
zccst
JavaScript
作者:zccst
FIS通过插件扩展可以完美的支持模块化的前端开发方案,我们通过FIS的二次封装能力,封装了一个功能完备的纯前端模块化方案pure。
1,fis-pure的安装
$ fis install -g fis-pure
$ pure -v
0.1.4
2,下载demo到本地
git clone https://github.com/hefangshi/f