前期测试函数用的数据,论坛中的文本,每一行代表一条留言,标点符号已经去掉。
def loadDataSet():
'''创建一些实验样本'''
postingList = [['my','dog','has','flea','problems','help','please'],
['maybe','not','take','him','to','dog','park','stupid'],
['my','dalmation','is','so','cute','I','love','him'],
['stop','posting','stupid','worthless','garbage'],
['mr','licks','ate','my','steak','how','to','stop','him'],
['quit','buying','worthless','dog','food','stupid']]
classVec = [0,1,0,1,0,1] #0代表正常言论 1表示侮辱性
return postingList,classVec
将样本中的所有单词构成一个词库,不包含重复项。
def createVocabList(dataSet):
'''返回一个包含所有文档中出现的不重复的词条集合'''
vocabSet = set([])
for document in dataSet:
vocabSet = vocabSet | set(document) #创建两个集合的并集
return list(vocabSet)
词表向向量的转换函数,如果出现则为1.
def setOfWords2Vec(vocabList,inputSet):
'''接受词汇表和某个文档,返回该文档向量'''
returnVec = [0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] = 1
else:
print("the word:{} is not in my Vocabulary".format(word))
return returnVec
测试上述
listOPosts,listClasses = loadDataSet()
myVocabList = createVocabList(listOPosts)
myVocabList
['so',
'buying',
'please',
'has',
'dalmation',
'my',
'cute',
'quit',
'love',
'stupid',
'park',
'not',
'how',
'flea',
'problems',
'licks',
'food',
'stop',
'help',
'him',
'ate',
'maybe',
'take',
'I',
'worthless',
'to',
'steak',
'mr',
'is',
'garbage',
'posting',
'dog']
setOfWords2Vec(myVocabList,listOPosts[0])
[0,
0,
1,
1,
0,
1,
0,
0,
0,
0,
0,
0,
0,
1,
1,
0,
0,
0,
1,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
1]
朴素贝叶斯分类器训练数据
原理:贝叶斯公式
w为词向量,ci为类别,由假设条件独立
def trainNB0(trainMatrix,trainCategory):
'''输入文档矩阵,每篇文档类别构成的向量
返回两个向量[元素是各个词条的条件概率P(Wi | C1) ,其中i=1,2,...,词条数]和一个先验概率'''
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategory) / float(numTrainDocs) #类别中侮辱性对应1,它的先验概率(若非二分问题此处修改)
#p0Num = zeros(numWords);p1Num = zeros(numWords)
#p0Denom = 0.0;p1denom = 0.0 #初始化概率
p0Num = ones(numWords);p1Num = ones(numWords)
p0Denom = 2.0;p1denom = 2.0 #初始化概率,拉普拉斯平滑,避免出现0
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i] #类别为1的各单词的数
p1denom += sum(trainMatrix[i]) #类别为1的所有单词数
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
#p1Vect = p1Num/p1denom
#p0Vect = p0Num/p0Denom
p1Vect = log(p1Num/p1denom) #对乘积取自然对数,解决乘积很小时出现下溢出
p0Vect = log(p0Num/p0Denom)
return p0Vect,p1Vect,pAbusive
测试上述
trainMat = []
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList,postinDoc))
p0v,p1v,pAb = trainNB0(trainMat,listClasses)
pAb
0.5
p0v
array([-2.56494936, -3.25809654, -2.56494936, -2.56494936, -2.56494936,
-1.87180218, -2.56494936, -3.25809654, -2.56494936, -3.25809654,
-3.25809654, -3.25809654, -2.56494936, -2.56494936, -2.56494936,
-2.56494936, -3.25809654, -2.56494936, -2.56494936, -2.15948425,
-2.56494936, -3.25809654, -3.25809654, -2.56494936, -3.25809654,
-2.56494936, -2.56494936, -2.56494936, -2.56494936, -3.25809654,
-3.25809654, -2.56494936])
p1v
array([-3.04452244, -2.35137526, -3.04452244, -3.04452244, -3.04452244,
-3.04452244, -3.04452244, -2.35137526, -3.04452244, -1.65822808,
-2.35137526, -2.35137526, -3.04452244, -3.04452244, -3.04452244,
-3.04452244, -2.35137526, -2.35137526, -3.04452244, -2.35137526,
-3.04452244, -2.35137526, -2.35137526, -3.04452244, -1.94591015,
-2.35137526, -3.04452244, -3.04452244, -3.04452244, -2.35137526,
-2.35137526, -1.94591015])
朴素贝叶斯分类函数
def classifyNB(vec2Classify,p0Vec,p1Vec,pClass1):
'''输入要分类的向量,及训练得到的参数
返回分类'''
# log((p(w|ci)*p(ci))
p1 = sum(vec2Classify * p1Vec) + log(pClass1) #元素相乘,此处相加是由于取对数了,而且vec2Classify的元素是0,1,从而对p1Vec和p0Vec
p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1) #进行了筛选(0乘上去为0),即只用样例出现的各个独立条件概率(训练得到的参数)
if p1 > p0:
return 1
else:
return 0
测试
testEntry = ['love','my','dalmation']
thisDoc = array(setOfWords2Vec(myVocabList,testEntry))
print("{0}classified as:{1}".format(testEntry,classifyNB(thisDoc,p0v,p1v,pAb)))
testEntry = ['stupid','garbage']
thisDoc = array(setOfWords2Vec(myVocabList,testEntry))
print("{0}classified as:{1}".format(testEntry,classifyNB(thisDoc,p0v,p1v,pAb)))
['love', 'my', 'dalmation']classified as:0
['stupid', 'garbage']classified as:1
词集模型是上面函数setOfWords2Vec()实现的,而词袋模型是每个单词可以出现多次
def bagOfWords2VecMN(vocabList,inputSet):
'''接受词汇表和某个文档,返回该文档向量'''
returnVec = [0] * len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] += 1
return returnVec
准备数据,文件解析,从文本文档中构建自己的词列表
def textParse(bigString):
'''文本文件解析,返回字符串列表'''
import re
listOfTokens = re.split(r'\W*',bigString) # 去除标点符号
return [tok.lower() for tok in listOfTokens if len(tok) > 2] # 转为小写,过滤掉出现次数少于2的单词
对垃圾邮件进行自动化处理
def spamTest():
docList = [];classList = [];fullText = []
for i in range(1,26):
#导入并解析文件
wordList = textParse(open('E:\DataMining\Project\MLBook\机器学习实战源代码\machinelearninginaction\Ch04\email\spam\{}.txt'.
format(i)).read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(1)
wordList = textParse(open('E:\DataMining\Project\MLBook\机器学习实战源代码\machinelearninginaction\Ch04\email\ham\{}.txt'.
format(i),encoding='gb18030',errors='ignore').read())
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
vocabList = createVocabList(docList) #返回所有文档中不重复的词集
trainingSet = list(range(50));testSet = []
for i in range(10):
#随机构建训练集 留存交叉验证
randomIndex = int(random.uniform(0,len(trainingSet)))
testSet.append(trainingSet[randomIndex])
del(trainingSet[randomIndex])
trainMat = [];trainClasses = []
for docIndex in trainingSet:
trainMat.append(setOfWords2Vec(vocabList,docList[docIndex]))
trainClasses.append(classList[docIndex])
p0v,p1v,pSpam = trainNB0(array(trainMat),array(trainClasses))
errorCount = 0
for docIndex in testSet:
#对测试集分类
wordVector = setOfWords2Vec(vocabList,docList[docIndex])
if classifyNB(array(wordVector),p0v,p1v,pSpam) != classList[docIndex]:
errorCount += 1
print("the error rate is {}".format(float(errorCount)/len(testSet)))
return float(errorCount)/len(testSet)
重复10次取错误率均值
errorPercent = 0.0
for i in range(10):
errorPercent += spamTest()
print("the average error persent is : {}%".format(errorPercent/10 * 100))
E:\Anaconda3\lib\re.py:212: FutureWarning: split() requires a non-empty pattern match.
return _compile(pattern, flags).split(string, maxsplit)
the error rate is 0.1
the error rate is 0.0
the error rate is 0.0
the error rate is 0.2
the error rate is 0.0
the error rate is 0.0
the error rate is 0.1
the error rate is 0.1
the error rate is 0.0
the error rate is 0.0
the average error persent is : 5.0%