LeetCode 72. Edit Distance
LeetCode题解专栏:LeetCode题解
LeetCode 所有题目总结:LeetCode 所有题目总结
大部分题目C++,Python,Java的解法都有。
此题链接:Edit Distance - LeetCode
LeetCode 动态规划(Dynamic programming)系列题目:LeetCode 动态规划(Dynamic programming)系列题目
做这道题目前建议先做One Edit Distance - LeetCode
文章地址:LeetCode 161. One Edit Distance–Python,Java,C++解法 - zhangpeterx的博客 - CSDN博客
Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.
You have the following 3 operations permitted on a word:
Example 1:
Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')
Example 2:
Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')
这道题目是hard
难度的,做法肯定是动态规划,至于怎么做就很难想了。
具体做法官方的结题文章写得很好:Edit Distance - LeetCode Articles
评论区里的大佬们发表了看法:
tomasnovella: Reaaaaally ? You guys don’t even mention in the solution that it’s a good old Levenshtein distance ?
Please if you use some known algorithm, at least mention it!
所以这道题目的英文正式名字叫做Levenshtein Distance Algorithm
Java官方解法如下:
class Solution {
public int minDistance(String word1, String word2) {
int n = word1.length();
int m = word2.length();
// if one of the strings is empty
if (n * m == 0)
return n + m;
// array to store the convertion history
int [][] d = new int[n + 1][m + 1];
// init boundaries
for (int i = 0; i < n + 1; i++) {
d[i][0] = i;
}
for (int j = 0; j < m + 1; j++) {
d[0][j] = j;
}
// DP compute
for (int i = 1; i < n + 1; i++) {
for (int j = 1; j < m + 1; j++) {
int left = d[i - 1][j] + 1;
int down = d[i][j - 1] + 1;
int left_down = d[i - 1][j - 1];
if (word1.charAt(i - 1) != word2.charAt(j - 1))
left_down += 1;
d[i][j] = Math.min(left, Math.min(down, left_down));
}
}
return d[n][m];
}
}
Python官方解法如下:
class Solution:
def minDistance(self, word1: str, word2: str) -> int:
n = len(word1)
m = len(word2)
# if one of the strings is empty
if n * m == 0:
return n + m
# array to store the convertion history
d = [ [0] * (m + 1) for _ in range(n + 1)]
# init boundaries
for i in range(n + 1):
d[i][0] = i
for j in range(m + 1):
d[0][j] = j
# DP compute
for i in range(1, n + 1):
for j in range(1, m + 1):
left = d[i - 1][j] + 1
down = d[i][j - 1] + 1
left_down = d[i - 1][j - 1]
if word1[i - 1] != word2[j - 1]:
left_down += 1
d[i][j] = min(left, down, left_down)
return d[n][m]