Linux内核代码中使用的双向链表接口,简单、扩展性好,简化代码实现;
本人实际使用中,裁剪出一个简化版本接口文件(第3部分,可直接移植),可
满足基本的增、删、查功能,算法效率随元素个数线性增长-O(n)。
一、接口定义
- list_add - 新增链表元素
- list_del - 删除链表元素
- list_move - 移动链表元素
- list_splice - 合并链表
- list_for_each_entry - 遍历链表
- list_for_each_entry_reverse - 反向遍历链表
二、应用示例
以下示例代码,关键之处在于:在目标结构体中内嵌 struct list_head。
代码演示了链表静态创建、插入、查找、删除,简单方便。
/* 数组元素个数. @weifan */
#define NELEM(plist) (sizeof(plist)/sizeof(typeof(*plist))))
typedef struct {
int dwStar; /* Put some stars in this box! @weifan */
struct list_head list; /* 关键之处: 在目标结构体中内嵌 struct list_head. @weifan */
}
LIST_SAMPLE_BOX_T;
/** @fn : list_if_coding_sample
* @brief : list接口应用示例
* @param : None
* @return : #
* @author : [email protected]
*/
void list_if_coding_sample(void)
{
int i = 0;
/* box list head. @weifan */
LIST_SAMPLE_BOX_T stBoxHead = {0, LIST_HEAD_INIT(stBoxHead)};
/* boxes to add, with 1,2,3... stars for these boxes. @weifan */
LIST_SAMPLE_BOX_T stBox1 = {1, LIST_HEAD_INIT(stBox1)};
LIST_SAMPLE_BOX_T stBox2 = {2, LIST_HEAD_INIT(stBox2)};
LIST_SAMPLE_BOX_T stBox3 = {3, LIST_HEAD_INIT(stBox3)};
LIST_SAMPLE_BOX_T *pstBoxArray[] = {&stBox1, &stBox2, &stBox3};
LIST_SAMPLE_BOX_T pstBoxPtr = NULL;
/* Add boxes, with different stars, to box head list. @weifan */
for (i = 0; i < NELEM(pstBoxArray); i++)
{
list_add(&(pstBoxArray[i].list), &(stBoxHead->list));
}
/* Find the box with 2 stars in the box head list, and remove it. @weifan */
list_for_each_entry(pstBoxPtr, stBoxHead, list)
{
if (2 == pstBoxPtr->dwStar)
{
printf("Box with 2 stars FOUND!\n");
printf("Then Remove it!\n");
list_del(&(pstBoxPtr->list));
}
}
/* Re-find the box with 2 stars. @weifan */
list_for_each_entry(pstBoxPtr, stBoxHead, list)
{
if (2 == pstBoxPtr->dwStar)
{
printf("Box with 2 stars Not Removed!\n");
}
}
printf("Sample Ends.\n");
return ;
}
三、接口实现
以下链表实现头文件可直接移植引用,代码源自Linux内核 list.h 文件。
/******************************************************************************
@note Author [email protected]. All Right Reserved.
******************************************************************************
@file: list.h
@version: v1.0.0
@author: [email protected]
@date: Sunday, January 21, 2018
@note:
@brief: minimum list interface, copy from linux kernel.
@func:
@history:
@date: Sunday, January 21, 2018
@note: Create
******************************************************************************/
#ifndef __LIST_H__
#define __LIST_H__
/*----------------------------------------------*
* Included Header *
*----------------------------------------------*/
/*----------------------------------------------*
* Macros *
*----------------------------------------------*/
/**
* container_of - cast a member of a structure out to the containing structure
*
* @ptr: the pointer to the member.
* @type: the type of the container struct this is embedded in.
* @member: the name of the member within the struct.
*
*/
#ifndef container_of
#define container_of(ptr, type, member) ({ \
const typeof( ((type *)0)->member ) *__mptr = (ptr); \
(type *)( (char *)__mptr - offsetof(type,member) );})
#endif
/*
* These are non-NULL pointers that will result in page faults
* under normal circumstances, used to verify that nobody uses
* non-initialized list entries.
*/
#define LIST_POISON1 ((void *) 0x00100100)
#define LIST_POISON2 ((void *) 0x00200200)
/*
* Simple doubly linked list implementation.
*
* Some of the internal functions ("__xxx") are useful when
* manipulating whole lists rather than single entries, as
* sometimes we already know the next/prev entries and we can
* generate better code by using them directly rather than
* using the generic single-entry routines.
*/
struct list_head {
struct list_head *next, *prev;
};
#define LIST_HEAD_INIT(name) { &(name), &(name) }
#define LIST_HEAD(name) \
struct list_head name = LIST_HEAD_INIT(name)
#define INIT_LIST_HEAD(ptr) do { \
(ptr)->next = (ptr); (ptr)->prev = (ptr); \
} while (0)
/*
* Insert a new entry between two known consecutive entries.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static inline void __list_add(struct list_head *new,
struct list_head *prev,
struct list_head *next)
{
next->prev = new;
new->next = next;
new->prev = prev;
prev->next = new;
}
/**
* list_add - add a new entry
* @new: new entry to be added
* @head: list head to add it after
*
* Insert a new entry after the specified head.
* This is good for implementing stacks.
*/
static inline void list_add(struct list_head *new, struct list_head *head)
{
__list_add(new, head, head->next);
}
/**
* list_add_tail - add a new entry
* @new: new entry to be added
* @head: list head to add it before
*
* Insert a new entry before the specified head.
* This is useful for implementing queues.
*/
static inline void list_add_tail(struct list_head *new, struct list_head *head)
{
__list_add(new, head->prev, head);
}
/*
* Delete a list entry by making the prev/next entries
* point to each other.
*
* This is only for internal list manipulation where we know
* the prev/next entries already!
*/
static inline void __list_del(struct list_head * prev, struct list_head * next)
{
next->prev = prev;
prev->next = next;
}
/**
* list_del - deletes entry from list.
* @entry: the element to delete from the list.
* Note: list_empty on entry does not return true after this, the entry is
* in an undefined state.
*/
static inline void list_del(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
entry->next = LIST_POISON1;
entry->prev = LIST_POISON2;
}
/**
* list_del_init - deletes entry from list and reinitialize it.
* @entry: the element to delete from the list.
*/
static inline void list_del_init(struct list_head *entry)
{
__list_del(entry->prev, entry->next);
INIT_LIST_HEAD(entry);
}
/**
* list_move - delete from one list and add as another's head
* @list: the entry to move
* @head: the head that will precede our entry
*/
static inline void list_move(struct list_head *list, struct list_head *head)
{
__list_del(list->prev, list->next);
list_add(list, head);
}
/**
* list_move_tail - delete from one list and add as another's tail
* @list: the entry to move
* @head: the head that will follow our entry
*/
static inline void list_move_tail(struct list_head *list,
struct list_head *head)
{
__list_del(list->prev, list->next);
list_add_tail(list, head);
}
/**
* list_empty - tests whether a list is empty
* @head: the list to test.
*/
static inline int list_empty(const struct list_head *head)
{
return head->next == head;
}
/**
* list_empty_careful - tests whether a list is
* empty _and_ checks that no other CPU might be
* in the process of still modifying either member
*
* NOTE: using list_empty_careful() without synchronization
* can only be safe if the only activity that can happen
* to the list entry is list_del_init(). Eg. it cannot be used
* if another CPU could re-list_add() it.
*
* @head: the list to test.
*/
static inline int list_empty_careful(const struct list_head *head)
{
struct list_head *next = head->next;
return (next == head) && (next == head->prev);
}
static inline void __list_splice(struct list_head *list,
struct list_head *head)
{
struct list_head *first = list->next;
struct list_head *last = list->prev;
struct list_head *at = head->next;
first->prev = head;
head->next = first;
last->next = at;
at->prev = last;
}
/**
* list_splice - join two lists
* @list: the new list to add.
* @head: the place to add it in the first list.
*/
static inline void list_splice(struct list_head *list, struct list_head *head)
{
if (!list_empty(list))
__list_splice(list, head);
}
/**
* list_splice_init - join two lists and reinitialise the emptied list.
* @list: the new list to add.
* @head: the place to add it in the first list.
*
* The list at @list is reinitialised
*/
static inline void list_splice_init(struct list_head *list,
struct list_head *head)
{
if (!list_empty(list)) {
__list_splice(list, head);
INIT_LIST_HEAD(list);
}
}
/**
* list_entry - get the struct for this entry
* @ptr: the &struct list_head pointer.
* @type: the type of the struct this is embedded in.
* @member: the name of the list_struct within the struct.
*/
#define list_entry(ptr, type, member) \
container_of(ptr, type, member)
/**
* __list_for_each - iterate over a list
* @pos: the &struct list_head to use as a loop counter.
* @head: the head for your list.
*
* This variant differs from list_for_each() in that it's the
* simplest possible list iteration code, no prefetching is done.
* Use this for code that knows the list to be very short (empty
* or 1 entry) most of the time.
*/
#define __list_for_each(pos, head) \
for (pos = (head)->next; pos != (head); pos = pos->next)
/**
* list_for_each_prev - iterate over a list backwards
* @pos: the &struct list_head to use as a loop counter.
* @head: the head for your list.
*/
#define list_for_each_prev(pos, head) \
for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
pos = pos->prev)
/**
* list_for_each_safe - iterate over a list safe against removal of list entry
* @pos: the &struct list_head to use as a loop counter.
* @n: another &struct list_head to use as temporary storage
* @head: the head for your list.
*/
#define list_for_each_safe(pos, n, head) \
for (pos = (head)->next, n = pos->next; pos != (head); \
pos = n, n = pos->next)
/**
* list_for_each_entry - iterate over list of given type
* @pos: the type * to use as a loop counter.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry(pos, head, member) \
for (pos = list_entry((head)->next, typeof(*pos), member); \
&pos->member != (head); \
pos = list_entry(pos->member.next, typeof(*pos), member))
/**
* list_for_each_entry_reverse - iterate backwards over list of given type.
* @pos: the type * to use as a loop counter.
* @head: the head for your list.
* @member: the name of the list_struct within the struct.
*/
#define list_for_each_entry_reverse(pos, head, member) \
for (pos = list_entry((head)->prev, typeof(*pos), member); \
&pos->member != (head); \
pos = list_entry(pos->member.prev, typeof(*pos), member))
/*----------------------------------------------*
* Type Definition *
*----------------------------------------------*/
/*----------------------------------------------*
* Constant *
*----------------------------------------------*/
/*----------------------------------------------*
* External Varible *
*----------------------------------------------*/
/*----------------------------------------------*
* Gobal Varible *
*----------------------------------------------*/
/*----------------------------------------------*
* Module Varible *
*----------------------------------------------*/
/*----------------------------------------------*
* External Function *
*----------------------------------------------*/
/*----------------------------------------------*
* Internal Function *
*----------------------------------------------*/
/*----------------------------------------------*
* Routines' Implementations *
*----------------------------------------------*/
#endif