Pytorch入门实战-----双向RNN识别手写数据集

跑了一个epoch,测试了一下:

Pytorch入门实战-----双向RNN识别手写数据集_第1张图片

import torch
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
from torch.autograd import Variable

#Hyper Parameters
sequence_length = 28
input_size = 28
hidden_size = 128
num_layers = 2
num_classes = 10
batch_size = 100
num_epochs = 1
learning_rate = 0.003

#MNIST Datasets
train_dataset = dsets.MNIST(
    root='./data',
    train=True,
    transform=transforms.ToTensor(),
    download=False
)

test_dataset = dsets.MNIST(
    root='./data/',
    train=False,
    transform=transforms.ToTensor(),
    download=False
)

#Data Loader
train_loader = torch.utils.data.DataLoader(
    dataset= train_dataset,
    batch_size=batch_size,
    shuffle= True
)
test_loader = torch.utils.data.DataLoader(
    dataset=test_dataset,
    batch_size=batch_size,
    shuffle=False
)

#BIRNN Model
class BIRNN(nn.Module):
    def __init__(self,input_size,hidden_size,num_layers,num_classes):
        super(BIRNN,self).__init__()
        self.hidden_size = hidden_size
        self.num_layers = num_layers
        self.lstm = nn.LSTM(input_size,hidden_size,num_layers,
                            batch_first=True,bidirectional=True)
        self.fc = nn.Linear(hidden_size*2,num_classes)

    def forward(self, x):
        h0 = Variable(torch.zeros(self.num_layers*2,x.size(0),self.hidden_size))
        c0 = Variable(torch.zeros(self.num_layers*2,x.size(0),self.hidden_size))

        out,_ = self.lstm(x,(h0,c0))
        out = self.fc(out[:,-1,:])
        return out

rnn = BIRNN(input_size,hidden_size,num_layers,num_classes)

#Loss and Optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(rnn.parameters(),lr=learning_rate)

#Train the Model
for epoch in range(num_epochs):
    for i,(images,labels) in enumerate(train_loader):
        images = Variable(images.view(-1,sequence_length,input_size))
        labels = Variable(labels)

        #Forward + Backward + Optimize
        optimizer.zero_grad()
        outputs = rnn(images)
        loss = criterion(outputs,labels)
        loss.backward()
        optimizer.step()

        if (i+1) % 1 == 0:
            print('Epoch [%d/%d], Step [%d/%d], Loss: %.4f'
                  % (epoch + 1, num_epochs, i + 1, len(train_loader), loss.item()))

#Test the Model
correct = 0
total = 0
for images,labels in test_loader:
    images = Variable(images.view(-1,sequence_length,input_size))
    outputs = rnn(images)
    _,predicted = torch.max(outputs.data,1)
    total += labels.size(0)
    correct += (predicted == labels).sum()

print('Test Accuracy of the model on the 10000 test images: %d %%' % (100*correct/total))

# Save the Model
torch.save(rnn.state_dict(), 'birnn.pkl')

 

你可能感兴趣的:(Pytroch实战)