【深度学习与tensorflow2.0实战】(网易云课堂)13-GAN

本文目录

  • GAN原理
  • 纳什均衡-D、G
  • EM距离
  • GAN实战
    • **gan.py**
    • dataset.py

GAN原理

【深度学习与tensorflow2.0实战】(网易云课堂)13-GAN_第1张图片
【深度学习与tensorflow2.0实战】(网易云课堂)13-GAN_第2张图片

Having Fun
▪ https://reiinakano.github.io/gan-playground/
▪ https://affinelayer.com/pixsrv/
▪ https://www.youtube.com/watch?v=9reHvktowLY&feature=youtu.be
▪ https://github.com/ajbrock/Neural-Photo-Editor
▪ https://github.com/nashory/gans-awesome-applications

纳什均衡-D、G

【深度学习与tensorflow2.0实战】(网易云课堂)13-GAN_第3张图片
【深度学习与tensorflow2.0实战】(网易云课堂)13-GAN_第4张图片
【深度学习与tensorflow2.0实战】(网易云课堂)13-GAN_第5张图片
【深度学习与tensorflow2.0实战】(网易云课堂)13-GAN_第6张图片
图片变大
【深度学习与tensorflow2.0实战】(网易云课堂)13-GAN_第7张图片
【深度学习与tensorflow2.0实战】(网易云课堂)13-GAN_第8张图片
初始不会有overlap(重叠)
【深度学习与tensorflow2.0实战】(网易云课堂)13-GAN_第9张图片
【深度学习与tensorflow2.0实战】(网易云课堂)13-GAN_第10张图片
【深度学习与tensorflow2.0实战】(网易云课堂)13-GAN_第11张图片
【深度学习与tensorflow2.0实战】(网易云课堂)13-GAN_第12张图片
【深度学习与tensorflow2.0实战】(网易云课堂)13-GAN_第13张图片

EM距离

【深度学习与tensorflow2.0实战】(网易云课堂)13-GAN_第14张图片
WD解决早期GAN不能convert的情况。梯度消失等问题
【深度学习与tensorflow2.0实战】(网易云课堂)13-GAN_第15张图片
【深度学习与tensorflow2.0实战】(网易云课堂)13-GAN_第16张图片
【深度学习与tensorflow2.0实战】(网易云课堂)13-GAN_第17张图片
【深度学习与tensorflow2.0实战】(网易云课堂)13-GAN_第18张图片

GAN实战

【深度学习与tensorflow2.0实战】(网易云课堂)13-GAN_第19张图片

gan.py

import  tensorflow as tf
from    tensorflow import keras
from    tensorflow.keras import layers


class Generator(keras.Model):

    def __init__(self):
        super(Generator, self).__init__()  

        # z: [b, 100] => [b, 3*3*512] => [b, 3, 3, 512] => [b, 64, 64, 3]
        self.fc = layers.Dense(3*3*512)

        self.conv1 = layers.Conv2DTranspose(256, 3, 3, 'valid')
        self.bn1 = layers.BatchNormalization()

        self.conv2 = layers.Conv2DTranspose(128, 5, 2, 'valid')
        self.bn2 = layers.BatchNormalization()

        self.conv3 = layers.Conv2DTranspose(3, 4, 3, 'valid')

    def call(self, inputs, training=None):
        # [z, 100] => [z, 3*3*512]
        x = self.fc(inputs)
        x = tf.reshape(x, [-1, 3, 3, 512])
        x = tf.nn.leaky_relu(x)

        #
        x = tf.nn.leaky_relu(self.bn1(self.conv1(x), training=training))
        x = tf.nn.leaky_relu(self.bn2(self.conv2(x), training=training))
        x = self.conv3(x)
        x = tf.tanh(x)

        return x


class Discriminator(keras.Model):

    def __init__(self):
        super(Discriminator, self).__init__()

        # [b, 64, 64, 3] => [b, 1]
        self.conv1 = layers.Conv2D(64, 5, 3, 'valid')

        self.conv2 = layers.Conv2D(128, 5, 3, 'valid')
        self.bn2 = layers.BatchNormalization()

        self.conv3 = layers.Conv2D(256, 5, 3, 'valid')
        self.bn3 = layers.BatchNormalization()

        # [b, h, w ,c] => [b, -1]
        self.flatten = layers.Flatten()
        self.fc = layers.Dense(1)


    def call(self, inputs, training=None):

        x = tf.nn.leaky_relu(self.conv1(inputs))
        x = tf.nn.leaky_relu(self.bn2(self.conv2(x), training=training))
        x = tf.nn.leaky_relu(self.bn3(self.conv3(x), training=training))

        # [b, h, w, c] => [b, -1]
        x = self.flatten(x)
        # [b, -1] => [b, 1]
        logits = self.fc(x)

        return logits
# 测试
def main():

    d = Discriminator()
    g = Generator()


    x = tf.random.normal([2, 64, 64, 3])
    z = tf.random.normal([2, 100])

    prob = d(x)
    print(prob)
    x_hat = g(z)
    print(x_hat.shape)

if __name__ == '__main__':
    main()

dataset.py

# 加载数据集
import multiprocessing

import tensorflow as tf

def make_anime_dataset(img_paths, batch_size, resize=64, drop_remainder=True, shuffle=True, repeat=1):
    @tf.function
    def _map_fn(img):
        img = tf.image.resize(img, [resize, resize])
        img = tf.clip_by_value(img, 0, 255)
        img = img / 127.5 - 1
        return img

    dataset = disk_image_batch_dataset(img_paths,
                                          batch_size,
                                          drop_remainder=drop_remainder,
                                          map_fn=_map_fn,
                                          shuffle=shuffle,
                                          repeat=repeat)
    img_shape = (resize, resize, 3)
    len_dataset = len(img_paths) // batch_size

    return dataset, img_shape, len_dataset


def batch_dataset(dataset,
                  batch_size,
                  drop_remainder=True,
                  n_prefetch_batch=1,
                  filter_fn=None,
                  map_fn=None,
                  n_map_threads=None,
                  filter_after_map=False,
                  shuffle=True,
                  shuffle_buffer_size=None,
                  repeat=None):
    # set defaults
    if n_map_threads is None:
        n_map_threads = multiprocessing.cpu_count()
    if shuffle and shuffle_buffer_size is None:
        shuffle_buffer_size = max(batch_size * 128, 2048)  # set the minimum buffer size as 2048

    # [*] it is efficient to conduct `shuffle` before `map`/`filter` because `map`/`filter` is sometimes costly
    if shuffle:
        dataset = dataset.shuffle(shuffle_buffer_size)

    if not filter_after_map:
        if filter_fn:
            dataset = dataset.filter(filter_fn)

        if map_fn:
            dataset = dataset.map(map_fn, num_parallel_calls=n_map_threads)

    else:  # [*] this is slower
        if map_fn:
            dataset = dataset.map(map_fn, num_parallel_calls=n_map_threads)

        if filter_fn:
            dataset = dataset.filter(filter_fn)

    dataset = dataset.batch(batch_size, drop_remainder=drop_remainder)

    dataset = dataset.repeat(repeat).prefetch(n_prefetch_batch)

    return dataset


def memory_data_batch_dataset(memory_data,
                              batch_size,
                              drop_remainder=True,
                              n_prefetch_batch=1,
                              filter_fn=None,
                              map_fn=None,
                              n_map_threads=None,
                              filter_after_map=False,
                              shuffle=True,
                              shuffle_buffer_size=None,
                              repeat=None):
    """Batch dataset of memory data.

    Parameters
    ----------
    memory_data : nested structure of tensors/ndarrays/lists

    """
    dataset = tf.data.Dataset.from_tensor_slices(memory_data)
    dataset = batch_dataset(dataset,
                            batch_size,
                            drop_remainder=drop_remainder,
                            n_prefetch_batch=n_prefetch_batch,
                            filter_fn=filter_fn,
                            map_fn=map_fn,
                            n_map_threads=n_map_threads,
                            filter_after_map=filter_after_map,
                            shuffle=shuffle,
                            shuffle_buffer_size=shuffle_buffer_size,
                            repeat=repeat)
    return dataset


def disk_image_batch_dataset(img_paths,
                             batch_size,
                             labels=None,
                             drop_remainder=True,
                             n_prefetch_batch=1,
                             filter_fn=None,
                             map_fn=None,
                             n_map_threads=None,
                             filter_after_map=False,
                             shuffle=True,
                             shuffle_buffer_size=None,
                             repeat=None):
    """Batch dataset of disk image for PNG and JPEG.

    Parameters
    ----------
        img_paths : 1d-tensor/ndarray/list of str
        labels : nested structure of tensors/ndarrays/lists

    """
    if labels is None:
        memory_data = img_paths
    else:
        memory_data = (img_paths, labels)

    def parse_fn(path, *label):
        img = tf.io.read_file(path)
        img = tf.image.decode_png(img, 3)  # fix channels to 3
        return (img,) + label

    if map_fn:  # fuse `map_fn` and `parse_fn`
        def map_fn_(*args):
            return map_fn(*parse_fn(*args))
    else:
        map_fn_ = parse_fn

    dataset = memory_data_batch_dataset(memory_data,
                                        batch_size,
                                        drop_remainder=drop_remainder,
                                        n_prefetch_batch=n_prefetch_batch,
                                        filter_fn=filter_fn,
                                        map_fn=map_fn_,
                                        n_map_threads=n_map_threads,
                                        filter_after_map=filter_after_map,
                                        shuffle=shuffle,
                                        shuffle_buffer_size=shuffle_buffer_size,
                                        repeat=repeat)

    return dataset

gan_train.py

import  os
import  numpy as np
import  tensorflow as tf
from    tensorflow import keras
from    scipy.misc import toimage
import  glob
from    gan import Generator, Discriminator

from    dataset import make_anime_dataset


def save_result(val_out, val_block_size, image_path, color_mode):
    def preprocess(img):
        img = ((img + 1.0) * 127.5).astype(np.uint8)
        # img = img.astype(np.uint8)
        return img

    preprocesed = preprocess(val_out)
    final_image = np.array([])
    single_row = np.array([])
    for b in range(val_out.shape[0]):
        # concat image into a row
        if single_row.size == 0:
            single_row = preprocesed[b, :, :, :]
        else:
            single_row = np.concatenate((single_row, preprocesed[b, :, :, :]), axis=1)

        # concat image row to final_image
        if (b+1) % val_block_size == 0:
            if final_image.size == 0:
                final_image = single_row
            else:
                final_image = np.concatenate((final_image, single_row), axis=0)

            # reset single row
            single_row = np.array([])

    if final_image.shape[2] == 1:
        final_image = np.squeeze(final_image, axis=2)
    toimage(final_image).save(image_path)


def celoss_ones(logits):
    # [b, 1]
    # [b] = [1, 1, 1, 1,]
    loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits,
                                                   labels=tf.ones_like(logits))
    return tf.reduce_mean(loss)


def celoss_zeros(logits):
    # [b, 1]
    # [b] = [1, 1, 1, 1,]
    loss = tf.nn.sigmoid_cross_entropy_with_logits(logits=logits,
                                                   labels=tf.zeros_like(logits))
    return tf.reduce_mean(loss)

def d_loss_fn(generator, discriminator, batch_z, batch_x, is_training):
    # 1. treat real image as real
    # 2. treat generated image as fake
    fake_image = generator(batch_z, is_training)
    d_fake_logits = discriminator(fake_image, is_training)
    d_real_logits = discriminator(batch_x, is_training)

    d_loss_real = celoss_ones(d_real_logits)
    d_loss_fake = celoss_zeros(d_fake_logits)

    loss = d_loss_fake + d_loss_real

    return loss


def g_loss_fn(generator, discriminator, batch_z, is_training):

    fake_image = generator(batch_z, is_training)
    d_fake_logits = discriminator(fake_image, is_training)
    loss = celoss_ones(d_fake_logits)

    return loss

def main():

    tf.random.set_seed(22)
    np.random.seed(22)
    os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
    assert tf.__version__.startswith('2.')


    # hyper parameters
    z_dim = 100
    epochs = 3000000
    batch_size = 512
    learning_rate = 0.002
    is_training = True


    img_path = glob.glob(r'C:\Users\Jackie Loong\Downloads\DCGAN-LSGAN-WGAN-GP-DRAGAN-Tensorflow-2-master\data\faces\*.jpg')

    dataset, img_shape, _ = make_anime_dataset(img_path, batch_size)
    print(dataset, img_shape)
    sample = next(iter(dataset))
    print(sample.shape, tf.reduce_max(sample).numpy(),
          tf.reduce_min(sample).numpy())
    dataset = dataset.repeat()
    db_iter = iter(dataset)


    generator = Generator()
    generator.build(input_shape = (None, z_dim))
    discriminator = Discriminator()
    discriminator.build(input_shape=(None, 64, 64, 3))

    g_optimizer = tf.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5)
    d_optimizer = tf.optimizers.Adam(learning_rate=learning_rate, beta_1=0.5)


    for epoch in range(epochs):

        batch_z = tf.random.uniform([batch_size, z_dim], minval=-1., maxval=1.)
        batch_x = next(db_iter)

        # train D
        with tf.GradientTape() as tape:
            d_loss = d_loss_fn(generator, discriminator, batch_z, batch_x, is_training)
        grads = tape.gradient(d_loss, discriminator.trainable_variables)
        d_optimizer.apply_gradients(zip(grads, discriminator.trainable_variables))

        # train G
        with tf.GradientTape() as tape:
            g_loss = g_loss_fn(generator, discriminator, batch_z, is_training)
        grads = tape.gradient(g_loss, generator.trainable_variables)
        g_optimizer.apply_gradients(zip(grads, generator.trainable_variables))

        if epoch % 100 == 0:
            print(epoch, 'd-loss:',float(d_loss), 'g-loss:', float(g_loss))

            z = tf.random.uniform([100, z_dim])
            fake_image = generator(z, training=False)
            img_path = os.path.join('images', 'gan-%d.png'%epoch)
            save_result(fake_image.numpy(), 10, img_path, color_mode='P')



if __name__ == '__main__':
    main()

你可能感兴趣的:(深度学习,人工智能)