1.vector用法
vector是C++标准模板库中的部分内容,它是一个多功能的,能够操作多种数据结构和算法的模板类和函数库。vector之所以被认为是一个容器,是因为它能够像容器一样存放各种类型的对象,简单地说,vector是一个能够存放任意类型的动态数组,能够增加和压缩数据。
为了可以使用vector,必须在你的头文件中包含下面的代码:
#include
vector属于std命名域的,因此需要通过命名限定
vector容器接口
c.assign(beg,end) 将[beg; end)区间中的数据赋值给c。
c.at(idx) 传回索引idx所指的数据,如果idx越界,抛出out_of_range。
c.back() 传回最后一个数据,不检查这个数据是否存在。
c.begin() 传回迭代器中的一个数据。
c.clear() 移除容器中所有数据。
c.empty() 判断容器是否为空。
c.end() 指向迭代器中的最后一个数据地址。
c.erase(pos) 删除pos位置的数据,传回下一个数据的位置。
c.erase(beg,end) 删除[beg,end)区间的数据,传回下一个数据的位置。
c.front() 传回地一个数据。 get_allocator 使用构造函数返回一个拷贝。 c.insert(pos,elem) 在pos位置插入一个elem拷贝,传回新数据位置。
c.insert(pos,n,elem) 在pos位置插入n个elem数据。无返回值。
c.insert(pos,beg,end) 在pos位置插入在[beg,end)区间的数据。无返回值。
c.pop_back() 删除最后一个数据。
c.push_back(elem) 在尾部加入一个数据
。 c.rbegin() 传回一个逆向队列的第一个数据。
c.rend() 传回一个逆向队列的最后一个数据的下一个位置。
c.resize(num) 重新指定队列的长度。
reserve(c.begin(),c.end) 可以翻转vector中的元素
c.size() 返回容器中实际数据的个数
。 c1.swap(c2) swap(c1,c2) 将c1和c2元素互换
2.string用法
string是一个字符串类,string查找替换、分割字符串、比较、截取、类型转换、排序等功能都提供了强大的处理函数,可以代替字符数组来使用。
string 提供了很多构造函数,可以以多种方式来初始化string字符串
例如:string s ="aaa"
string s=("sdf")
string s=(str,4)
string s=(str,3,6)
string重载了 = + += 等多种运算符,让字符串组合拼接更简单
可以直接+拼接字符串,可以直接==判断字符串是否相同
string可以按数组方式,以下标来访问。还可以用at()函数访问指定的字符
可以使用 STL 的接口
可以把 string 理解为一个特殊的容器,容器中装的是字符
可以使用push_back()此类函数
还有
比较操作 == != > >= < <= compare 等
string的比较操作,按字符在字典中的顺序进行逐一比较。在字典前面的字符小于后面的字符。
string中除了find、rfind,还有find_first_of等函数也提供了强大的查找功能
与 char[ ] 的相互转换
copy(),返回指针,赋值给char[ ]数组名
c_str() ,返回 const 类型的指针
data() ,将内容以字符数组的形式返回
还有substr() 来分割字符串
3.map的使用
Map是STL的一个关联容器,它提供一对一(其中第一个可以称为关键字,每个关键字只能在map中出现一次,第二个可能称为该关键字的值)的数据 处理能力,由于这个特性,它完成有可能在我们处理一对一数据的时候,在编程上提供快速通道。这里说下map内部数据的组织,map内部自建一颗红黑树(一 种非严格意义上的平衡二叉树),这颗树具有对数据自动排序的功能,所以在map内部所有的数据都是有序的,后边我们会见识到有序的好处。
map是一类关联式容器。它的特点是增加和删除节点对迭代器的影响很小,除了那个操作节点,对其他的节点都没有什么影响。
对于迭代器来说,可以修改实值,而不能修改key。使用map得包含map类所在的头文件
例如std:map
这样就定义了一个用int作为索引,并拥有相关联的指向string的指针.
这样就定义了一个用int作为索引,并拥有相关联的指向string的指针.
#include
第一种:用insert函数插入数据
例如:map.insert(value_type(3,sfsafsf))
map.insert(pair
map[1]="faffs"
以上用法,虽然都可以实现数据的插入,但是它们是有区别的,,用insert函数插入数据,在数据的 插入上涉及到集合的唯一性这个概念,即当map中有这个关键字时,insert操作是插入数据不了的,但是用数组方式就不同了,它可以覆盖以前该关键字对 应的值
用find函数来定位数据出现位置,它返回的一个迭代器,当数据出现时,它返回数据所在位置的迭代器,如果map中没有要查找的数据,它返回的迭代器等于end函数返回的迭代器。
查找map中是否包含某个关键字条目用find()方法,传入的参数是要查找的key,在这里需要提到的是begin()和end()两个成员,
分别代表map对象中第一个条目和最后一个条目,这两个数据的类型是iterator.
map中的swap用法
map中的swap不是一个容器中的元素交换,而是两个容器所有元素的交换
map中的sort问题
map中的元素是自动按Key升序排序,所以不能对map用sort函数;
这里要讲的是一点比较高深的用法了,排序问题,STL中默认是采用小于号来排序的,以上代码在排序上是不存在任何问题的,因为上面的关键字是int 型,它本身支持小于号运算,在一些特殊情况,比如关键字是一个结构体,涉及到排序就会出现问题,因为它没有小于号操作,insert等函数在编译的时候过 不去,下面给出两个方法解决这个问题。
map的基本操作函数:
C++ maps是一种关联式容器,包含“关键字/值”对
begin() 返回指向map头部的迭代器
clear() 删除所有元素
count() 返回指定元素出现的次数
empty() 如果map为空则返回true
end() 返回指向map末尾的迭代器
equal_range() 返回特殊条目的迭代器对
erase() 删除一个元素
find() 查找一个元素
get_allocator() 返回map的配置器
insert() 插入元素
key_comp() 返回比较元素key的函数
lower_bound() 返回键值>=给定元素的第一个位置
max_size() 返回可以容纳的最大元素个数
rbegin() 返回一个指向map尾部的逆向迭代器
rend() 返回一个指向map头部的逆向迭代器
size() 返回map中元素的个数
swap() 交换两个map
upper_bound() 返回键值>给定元素的第一个位置
value_comp() 返回比较元素value的函数
4.stack用法
堆栈是一个线性表,插入和删除只在表的一端进行。这一端称为栈顶(Stack Top),另一端则为栈底(Stack Bottom)。堆栈的元素插入称为入栈,元素的删除称为出栈。由于元素的入栈和出栈总在栈顶进行,因此,堆栈是一个后进先出(Last In First Out)表,即 LIFO 表。
用堆栈前,先要利用构造函数进行初始化,创建一个堆栈对象,以进行元素的入栈、出栈等操作。
1. stack()
默认构造函数,创建一个空的 stack 对象。
例如,下面一行代码使用默认的 deque 为底层容器,创建一个空的堆栈对象 s 。
stack
2. stack(const stack&)
复制构造函数,用一个 stack 堆栈创建一个新的堆栈。
例如,下面的代码利用 s1 ,创建一个以双向链表为底层容器的空堆栈对象 s2 。
// stack
stack
c++ stl栈stack的成员函数介绍
操作 比较和分配堆栈
empty() 堆栈为空则返回真
pop() 移除栈顶元素
push() 在栈顶增加元素
size() 返回栈中元素数目
back()函数这个函数很少见,返回是最后一个元素的索引,比如是第三个元素,它会返回2
top() 返回栈顶元素
5.list用法
1.关于list容器
list是一种序列式容器。list容器完成的功能实际上和数据结构中的双向链表是极其相似的,list中的数据元素是通过链表指针串连成逻辑意义上的线性表,也就是list也具有链表的主要优点,即:在链表的任一位置进行元素的插入、删除操作都是快速的。list的实现大概是这样的:list的每个节点有三个域:前驱元素指针域、数据域和后继元素指针域。前驱元素指针域保存了前驱元素的首地址;数据域则是本节点的数据;后继元素指针域则保存了后继元素的首地址。其实,list和循环链表也有相似的地方,即:头节点的前驱元素指针域保存的是链表中尾元素的首地址,list的尾节点的后继元素指针域则保存了头节点的首地址,这样,list实际上就构成了一个双向循环链表。
list() 声明一个空列表;
list(n) 声明一个有n个元素的列表,每个元素都是由其默认构造函数T()构造出来的
list(n,val) 声明一个由n个元素的列表,每个元素都是由其复制构造函数T(val)得来的
list(n,val) 声明一个和上面一样的列表
list(first,last) 声明一个列表,其元素的初始值来源于由区间所指定的序列中的元素
begin()和end():通过调用list容器的成员函数begin()得到一个指向容器起始位置的iterator,可以调用list容器的 end() 函数来得到list末端下一位置,相当于:int a[n]中的第n+1个位置a[n],实际上是不存在的,不能访问,经常作为循环结束判断结束条件使用。
push_back() 和push_front():使用list的成员函数push_back和push_front插入一个元素到list中。其中push_back()从list的末端插入,而 push_front()实现的从list的头部插入。
empty():利用empty() 判断list是否为空。
resize(): 如果调用resize(n)将list的长度改为只容纳n个元素,超出的元素将被删除,如果需要扩展那么调用默认构造函数T()将元素加到list末端。如果调用resize(n,val),则扩展元素要调用构造函数T(val)函数进行元素构造,其余部分相同。
front()和back(): 通过front()可以获得list容器中的头部元素,通过back()可以获得list容器的最后一个元素。但是有一点要注意,就是list中元素是空的时候,这时候调用front()和back()会发生什么呢?实际上会发生不能正常读取数据的情况,但是这并不报错,那我们编程序时就要注意了,个人觉得在使用之前最好先调用empty()函数判断list是否为空。
merge():合并两个链表并使之默认升序(也可改),l1.merge(l2,greater
erase():删除一个元素或一个区域的元素(两个重载)
l1.erase(l1.begin()); 将l1的第一个元素删除。
l1.erase(l1.begin(),l1.end()); 将l1的从begin()到end()之间的元素删除
assign():具体和vector中的操作类似,也是有两种情况,第一种是:l1.assign(n,val)将 l1中元素变为n个T(val)。第二种情况是:l1.assign(l2.begin(),l2.end())将l2中的从l2.begin()到l2.end()之间的数值赋值给l1。
6.set用法
set是STL中一种标准关联容器。它底层使用平衡的搜索树——红黑树实现,插入删除操作时仅仅需要指针操作节点即可完成,不涉及到内存移动和拷贝,所以效率比较高。set,顾名思义是“集合”的意思,在set中元素都是唯一的,而且默认情况下会对元素自动进行升序排列,支持集合的交(set_intersection),差(set_difference) 并(set_union),对称差(set_symmetric_difference) 等一些集合上的操作,如果需要集合中的元素允许重复那么可以使用multiset
使用时注意包含头文件
s.begin() 返回set容器的第一个元素
s.end() 返回set容器的最后一个元素
s.clear() 删除set容器中的所有的元素
s.empty() 判断set容器是否为空
s.insert() 插入一个元素
s.erase() 删除一个元素
s.size() 返回当前set容器中的元素个数
7.deque
deque双端队列容器(double-ended queue)与vector非常相似,算法的时间复杂度也是常数阶O(1),deque内部的数据机制和执行性能与vector不同,一般说来,当考虑到容器元素的内存分配策略和操作的性能时,deque相对vector较为有优势。deque双端队列采用分块的线性结构来存储数据,具有高效的删除首尾元素的函数,由于deque容器是以deque块为单位进行内存的分配,并使用了二级的Map进行管理,因此不容易实现类似于vector的capacity和reverse函数,而且deque容器也不需要这样的获取和调整容器大小的函数。
、deque(size_type n) 创建一个具有n个元素的deque对象,每个deque元素具有它的类型下的默认值。
如:deque
void push_back(const T&)
void pop_front() 删除deque的第一个元素
void pop_back() 删除deque的最后一个元素
iterator erase(iterator pos) 删除迭代器pos所指的元素
iterator erase(iterator first, iterator last) 删除迭代器区间[first, last)的所有元素
void clear() 调用erase函数,清除所有元素
reverse_iterator rbegin()
revevse_iterator rend()
deque的交换:
void swap(deque&)
8.unordermap用法
#include
using namespace std::tr1;//与此同时需要加上命名空间
[查找元素是否存在]
若有unordered_map
方法1: 若存在 mp.find(x)!=mp.end()
方法2: 若存在 mp.count(x)!=0
[插入数据]
map.insert(Map::value_type(1,"Raoul"));
[遍历map]
unordered_map
(*it).first; //the key value
(*it).second //the mapped value
for(unordered_map
cout<<"key value is"<
也可以这样
for(auto& v : mp)
print v.first and v.second
[与map的区别]
内部实现机理
map: map内部实现了一个红黑树,该结构具有自动排序的功能,因此map内部的所有元素都是有序的,红黑树的每一个节点都代表着map的一个元素,因此,对于map进行的查找,删除,添加等一系列的操作都相当于是对红黑树进行这样的操作,故红黑树的效率决定了map的效率。
unordered_map: unordered_map内部实现了一个哈希表,因此其元素的排列顺序是杂乱的,无序的
map
优点:
有序性,这是map结构最大的优点,其元素的有序性在很多应用中都会简化很多的操作
红黑树,内部实现一个红黑书使得map的很多操作在的时间复杂度下就可以实现,因此效率非常的高
缺点:
空间占用率高,因为map内部实现了红黑树,虽然提高了运行效率,但是因为每一个节点都需要额外保存父节点,孩子节点以及红/黑性质,使得每一个节点都占用大量的空间
适用处,对于那些有顺序要求的问题,用map会更高效一些
unordered_map
优点:
因为内部实现了哈希表,因此其查找速度非常的快
缺点:
哈希表的建立比较耗费时间
适用处,对于查找问题,unordered_map会更加高效一些,因此遇到查找问题,常会考虑一下用unordered_map
10.unorderset
C++ 11中对unordered_set描述大体如下:无序集合容器(unordered_set)是一个存储唯一(unique,即无重复)的关联容器(Associative container),容器中的元素无特别的秩序关系,该容器允许基于值的快速元素检索,同时也支持正向迭代。
在一个unordered_set内部,元素不会按任何顺序排序,而是通过元素值的hash值将元素分组放置到各个槽(Bucker,也可以译为“桶”),这样就能通过元素值快速访问各个对应的元素(均摊耗时为O(1))。
原型中的Key代表要存储的类型,而hash
hash
整型值:bool、char、unsigned char、wchar_t、char16_t、char32_t、short、int、long、long long、unsigned short、unsigned int、unsigned long、unsigned long long。上述的基本数据类型,其标准库提供的hash函数只是简单将其值转换为一个size_t类型值,具体可以参考标准库functional_hash.h头文件
对于指针类型,标准库只是单一将地址转换为一个size_t值作为hash值,这里特别需要注意的是char *类型的指针,其标准库提供的hash函数只是将指针所指地址转换为一个sieze_t值,如果,你需要用char *所指的内容做hash,那么,你需要自己写hash函数或者调用系统提供的hash
标准库为string类型对象提供了一个hash函数,即:Murmur hash,。对于float、double、long double标准库也有相应的hash函数,这里,不做过多的解释,相应的可以参看functional_hash.h头文件。
上述只是介绍了基本数据类型,而在实际应用中,有时,我们需要使用自己写的hash函数,那怎么自定义hash函数?参考标准库基本数据类型的hash函数,我们会发现这些hash函数有个共同的特点:通过定义函数对象,实现相应的hash函数,这也就意味我们可以通过自定义相应的函数对象,来实现自定义hash函数。比如:已知平面上有N,每个点的x轴、y轴范围为[0,100],现在需要统计有多少个不同点?hash函数设计为:将每个点的x、y值看成是101进制
该参数用于实现比较两个关键字是否相等,至于为什么需要这个参数?这里做点解释,前面我们说过,当不同关键字,通过hash函数,可能会得到相同的关键字值,每当我们在unordered_set里面做数据插入、删除时,由于unordered_set关键字唯一性,所以我们得确保唯一性。标准库定义了基本类型的比较函数,而对于自定义的数据类型,我们需要自定义比较函数。这里有两种方法:重载==操作符和使用函数对象
在vector中,每当我们插入一个新元素时,如果当前的容量(capacity)已不足,需要向系统申请一个更大的空间,然后将原始数据拷贝到新空间中。这种现象在unordered_set中也存在,比如当前的表长为100,而真实存在表中的数据已经大于1000个元素,此时,每个bucker均摊有10个元素,这样就会影响到unordered_set的存取效率,而标准库通过采用某种策略来对当前空间进行扩容,以此来提高存取效率。当然,这里也存在缩容,原理和扩容类似,不过,需要注意的是,每当unordered_set内部进行一次扩容或者缩容,都需要对表中的数据重新计算,也就是说,扩容或者缩容的时间复杂度至少为O(n)。