tensorflow 很全的CNN练习例子(mnist数据集)

学习tensorflow中的练习,包括了常见的手段,留在这里做个备忘

1、以mnist为数据集,建立简单的1层conv+2层res结构 +2层全连接,其中res采用 bottleneck结构(为了练习,实际效果可能没用)
conv层->[-1,28,28,64] ,max_pooling->[-1,14,14,64],res1->[-1,14,14,64], res2->[-1,7,7,128],fc,fc,softmax
2、采用学习率递减方案,及采用滑动平均方案;并用图形化形式
3、summary图形化形式显示损失、学习率,
4、计算准确率,并用图形化显示
5、每20个epoch保存模型,并支持加载finetune
6、利用summary图形化显示计算图
7、利用queue加载数据
8 、res结构中使用BN
9 、全连接中使用dropout
10、初始化参数采用xavier
11、全局参数使用L2正则
12、读取数据局需要打乱

import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
#定义全局变量
#批量数量
BATCH_SIZE=200
#学习率,这是个超参数,和很多超参数都有关系(Batch_size、优化方法、BN、输入数据),需要自己不断的调试
LEARN_RATE_BASE=0.2
#学习率衰减率,是前一次的多少,通常是0.95,这是个超参数需要调试
LEARN_RATE_DECAY=0.95
#正则项的λ
REGULARIZATION_RATE=0.0001
#训练总的步数
TRAINING_STEP=5000
#总循环次数
EPOCH=60
#滑动平均 ,用于bn中
MOVING_AVERAGE_DECAY=0.99
#dropout rate,本例中的全连接神经单元个数较少,dropout 保持率比实际使用时大
KEEP_PROB=tf.Variable(0.8,dtype=tf.float32)

def res(inputs,depth,bottleneck_depth,stride,name,is_training=False):
    '''
        bottleneck结构:
            1、1*1,64 conv
            2、BN
            3、relu
            4、3*3,64 conv
            5、BN
            6、relu
            7、1*1 ,256 conv
            8、BN
            shortcut :1*1 256 conv+BN
    :param inputs:
    :return:
    '''
    with tf.variable_scope(name) as scope:
        bottleneck_conv1 = conv(inputs,bottleneck_depth,[1,1],strides=stride,name='bottleneck_conv1')
        bottleneck_conv1_bn = bn(bottleneck_conv1,is_training=is_training)
        bottleneck_conv1_relu = tf.nn.relu(bottleneck_conv1_bn)
        bottleneck_conv2 = conv(bottleneck_conv1_relu, bottleneck_depth, [3, 3], strides=1, name='bottleneck_conv2')
        bottleneck_conv2_bn = bn(bottleneck_conv2, is_training=is_training)
        bottleneck_conv2_relu = tf.nn.relu(bottleneck_conv2_bn)
        bottleneck_conv3 = conv(bottleneck_conv2_relu,depth,[1,1],strides=1,name='bottleneck_conv3')
        bottleneck_conv3_bn = bn(bottleneck_conv3, is_training=is_training)

        #如果不涉及到尺度变换,即stride=1时,可以采用identity变换
        #还有种思路,是1/2 下采样,这样就会少很多的参数
        shortcut = conv(inputs,depth,[1,1],strides=stride,name='shortcut')
        shortcut_bn = bn(shortcut, is_training=is_training)

        layers = tf.nn.relu(bottleneck_conv3_bn+shortcut_bn)
        return layers

#BN 训练阶段要采用滑动平均,预测阶段不用
def bn(inputs,is_training=False,name='BN' ):

    # bn和 batch_size 相关性非常大。如果batch_size过小会照成BN的均值的方差抖动明显
    # 那么 学习到的 beta,gamma就是个废的
    # 当然还有一种思路,是减少每次BN的均值和方差的变化,我们可以采用移动平均值,及均值和方差的历史积分值
    # 实际上都是这么做的,在计算图中保存了均值和方差的积分值
    '''
        tf中有两个BN函数,一个全自动,一个半自动
        tf.contrib.layers.batch_norm
        tf.nn.batch_normalization
    '''
    if(is_training == True):
        layers = tf.contrib.layers.batch_norm(inputs,decay=MOVING_AVERAGE_DECAY,is_training=True)
    else:
        layers = tf.contrib.layers.batch_norm(inputs,decay=MOVING_AVERAGE_DECAY,is_training=False)
    return  layers

#conv结构
def conv(inputs,filters,kernel_size,strides,name='conv'):

   return  tf.layers.conv2d(
        inputs=inputs,
        filters=filters,
        strides=strides,
        kernel_size=kernel_size,
        padding='same',
        activation=tf.nn.relu,
        kernel_initializer=tf.contrib.layers.xavier_initializer( uniform=True, seed=None,dtype=tf.float32),
        #kernel_regularizer=tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE),
        bias_initializer= tf.constant_initializer(0) ,
        #bias_regularizer=tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE),
        name=name)

#fc结构
def fc(inputs,units=50,name='fc'):
    return tf.layers.dense(inputs=inputs,
                           units=units,
                           activation=tf.nn.relu,
                           kernel_regularizer=tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE),
                           kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
                           bias_initializer=tf.constant_initializer(0) ,
                           bias_regularizer=tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE),
                           name=name)

def dropout(inputs,keep_prob):
    return tf.layers.dropout(inputs=inputs,rate=keep_prob)

def max_pooling(inputs, pool_size, strides,name):
    return tf.layers.max_pooling2d(inputs, pool_size, strides,name=name)


# loss
def loss(logits,labels):
    #采用softmax,和交叉熵
    return  tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,labels=labels)

#定义一个方法,随机批量取得数据。因为mnist.train.next_batch不支持随机,所以我们自己造一个
#返回一个list,list包含每批数据
def mini_batch(trainimg,trainlabel):
    indices = np.arange(trainimg.shape[0])
    np.random.shuffle(indices)
    for start_index in range(0,trainimg.shape[0]-BATCH_SIZE+1,BATCH_SIZE):
        excerpt = indices[start_index:start_index + BATCH_SIZE]
        yield trainimg[excerpt], trainlabel[excerpt]

#该方法是mini_batch 高级版本,可以多线程的执行读取数据,稍微比上面一种方法简单,且可服务于分布式学习
def mini_batch_premium(trainimg,trainlabel):
    #文件名队列
    input_queue = tf.train.slice_input_producer([trainimg, trainlabel], num_epochs=20, shuffle=True, capacity=8)
    #取数据
    x_batch, y_batch = tf.train.batch(input_queue, batch_size=BATCH_SIZE, num_threads=1, capacity=8,
                                      allow_smaller_final_batch=False)
    return x_batch, y_batch

#main函数,初始化全局变量
def main_run():
    #===============建立占位变量 总共有4个=====================
    inputs = tf.placeholder(tf.float32, [None, 28, 28, 1], "x")
    labels = tf.placeholder(tf.int32, [None, ], "y")
    global_step = tf.Variable(0, trainable=False)
    is_training = tf.placeholder(tf.bool, name="is_training")
    #====================网络骨架================================
    # 3*3,64卷积
    con1 = conv(inputs, filters=64, kernel_size =[1, 1], strides=1, name='con1')
    # max_pooling
    max_pooling1 = max_pooling(con1, [2, 2], 2, 'pooling1')

    res1 = res(max_pooling1, 128, 64, 1, 'res1', is_training)  # 尺寸不变
    res2 = res(res1, 256, 128, 2, 'res2', is_training)  # 尺寸减半,filter数量加倍

    # 矩阵打散成向量
    vec = tf.reshape(res2, [-1, 7 * 7 * 256])

    # 全连接
    fc1 = fc(vec, 100, 'fc1')
    # dropout
    #dropout_layer = dropout(fc1, keep_prob=KEEP_PROB)

    fc2 = fc(fc1, 50, 'fc2')
    #dropout_layer = dropout(fc2, keep_prob=KEEP_PROB)

    # 分类
    logits = fc(fc2, 10, 'logits')

    cross_entropy = loss(logits, labels)
    cross_entropy_mean = tf.reduce_mean(cross_entropy)
    #附加正则项
    reg_set = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
    regularization = tf.add_n(reg_set)
    loss_with_reg = cross_entropy_mean+regularization
    tf.summary.scalar("loss",loss_with_reg)

    learn_rate = tf.train.exponential_decay(LEARN_RATE_BASE, global_step, 1000, LEARN_RATE_DECAY)
    #采用AdamOptimizer的学习率要小一点
    #train_step = tf.train.AdamOptimizer(learn_rate).minimize(loss_with_reg, global_step=global_step)
    # 采用GradientDescentOptimizer的学习率要大一点
    train_step = tf.train.GradientDescentOptimizer(learn_rate).minimize(loss_with_reg, global_step=global_step)
    with tf.control_dependencies([train_step]):
         train_op = tf.no_op(name="train")
    # 计算精度
    correct_prediction = tf.equal(tf.cast(tf.argmax(logits, axis=1), tf.int32), labels)
    acc = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
    tf.summary.scalar("acc", acc)

    merged = tf.summary.merge_all()
    #=====================加载mnist数据======================================
    MNIST_data_folder = "E:\\TestTensorflow\\Data_Set\\MNIST_data"
    mnist = input_data.read_data_sets(MNIST_data_folder)

    trainimg = mnist.train.images  # (55000,784)
    trainlabel = mnist.train.labels  # (55000,10)

    saver = tf.train.Saver(max_to_keep=1)  # 设置为0 ,即每轮都保存
    image_batch, label_batch = mini_batch_premium(trainimg,trainlabel)
    with tf.Session() as session:
        session.run(tf.global_variables_initializer())
        #这是tf中无脑的设计,input_queue中的num_epoch居然是个本地变量,所以下一句一定要写上
        session.run(tf.local_variables_initializer())
        #保存图信息
        train_writer = tf.summary.FileWriter('log/train/', session.graph)
        test_writer = tf.summary.FileWriter('log/test/')
        #如果模型存在,则加载模型
        #model_file = tf.train.latest_checkpoint('ckpt/')
        #if(model_file is not None):
            #saver.restore(session, model_file)

        coord = tf.train.Coordinator()
        threads = tf.train.start_queue_runners(session,coord)
        epoch = 0
        try:
            while not coord.should_stop():
                data, label = session.run([image_batch, label_batch])
                #训练样本总数/batch_size
                #for inx, val in enumerate(mini_batch(trainimg, trainlabel)):
                #image_batch, label_batch = val
                _,_,loss_,global_step_,train_merged=session.run([train_op,acc,loss_with_reg,global_step,merged],feed_dict={inputs:np.reshape(data,[-1,28,28,1]),labels:label,is_training:True})
                train_writer.add_summary(train_merged, global_step_)
                if global_step_ % 20 == 0:
                    #数据量取多了,我的显存要爆炸,所以这里少取了一点
                    test_feed = {inputs: np.reshape(mnist.test.images[0:500, :], [-1, 28, 28, 1]),
                                 labels: mnist.test.labels[0:500], is_training: False}
                    validate_feed = {inputs: np.reshape(mnist.validation.images[0:500, :], [-1, 28, 28, 1]),
                                     labels: mnist.validation.labels[0:500], is_training: False}
                    validate_acc = session.run(acc, feed_dict=validate_feed)
                    test_acc,test_merged = session.run([acc,merged], feed_dict=test_feed)
                    print("global_step_ % d ===> validation accuracy|test accuracy|loss  %g|%g|%g" % (global_step_,validate_acc,test_acc,loss_))
                    #保存参数到摘要图
                    #保存测试精度,校验精度,损失值
                    test_writer.add_summary(test_merged,global_step_)

                    #保存一次模型
                if epoch % 10 == 0:
                    saver.save(session,'ckpt/mnist.ckpt',global_step=global_step)
                epoch = epoch + 1
        except tf.errors.OutOfRangeError:
            print("done")
        finally:
            coord.request_stop()
        coord.join(threads)

if __name__ == "__main__":
    main_run()

你可能感兴趣的:(tf)