我是做Tracking 的,对于速度要求非常高。发现傅里叶变换能够使用。
于是学习之。
核心: 最根本的一点就是将时域内的信号转移到频域里面。这样时域里的卷积能够转换为频域内的乘积!
在分析图像信号的频率特性时,对于一幅图像,直流分量表示预想的平均灰度。低频分量代表了大面积背景区域和缓慢变化部分,高频部分代表了它的边缘,细节,跳跃部分以及颗粒噪声. 因此,我们能够做对应的锐化和模糊的处理:提出当中的高频分量做傅里叶逆变换得到的就是锐化的结果。
提出当中的低频分量做傅里叶逆变换得到的就是模糊的结果。
最不能理解的应该是:截取频域图中的不论什么一个区域相应的都是原来的整张图的区域。而不是相应的局部。
由于频域内的各个点都反映的是整张图的一个状态。
我们能够用时间和频率来理解:当你走完一段单位路程的时候。如果你花了100秒,那么你的频率就是0.01HZ。
这个0.01HZ显然体现的是一个总体的结果。而不是局部。
我们再由公式来看:
能够非常明显的知道频域内的每个点的值都是由整个图像求出来的。当然以上得出的结果,我们一般仅仅关注幅值频谱图。
也就是说真正起作用的就是前面的那个cos x而已. 于是我们能够知道。在整个范围内(0 且其它地方的值仅仅可能比这个小。 在原点的傅里叶变换即等于图像的平均灰度级。由于 在原点处经常为零,F(0,0)有时称做 频率谱的直流成分。 使用: 当图像的尺寸是2,3,5的整数倍时,计算速度最快。因此opencv里面有一个函数: 可是这样就须要对原来的图像进行大小的处理,因此使用函数:CopyMakeBorder复制图像而且制作边界。 (处理边界卷积)
接下来我们须要给计算出来的结果分配空间:
另外重要的一个应用是: convolveDFT。 当中的 *代表的是 卷积。我认为这也是我们进行离散傅里叶变换的目的。 使得计算的速度大大的添加。 先来说一下卷积在图像中的意义: 如果图像f(x),模板是g(x),然后将模版g(x)在模版中移动,每到一个位置,就把f(x)与g(x)的定义域相交的元素进行乘积而且求和,得出新的图像一点,就是被卷积后的图像. 模版又称为卷积核.卷积核做一个矩阵的形状.(当然边缘点可能须要特殊的处理,同一时候这个操作和滤波也非常像,或许就是一回事)。 当中: 參考资料: http://blog.sina.com.cn/s/blog_4bdb170b01019atv.html http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/core/discrete_fourier_transform/discrete_fourier_transform.html http://www.cnblogs.com/xianglan/archive/2010/12/30/1922386.html http://www.cnblogs.com/tornadomeet/archive/2012/07/26/2610414.html http://blog.csdn.net/ubunfans/article/details/24787569 http://blog.csdn.net/lichengyu/article/details/18848281int m = getOptimalDFTSize( I.rows );
int n = getOptimalDFTSize( I.cols ); // 在边缘加入0
它能够使得图片的尺寸能够满足这个要求。
Mat padded;
copyMakeBorder(I, padded, 0, m - I.rows, 0, n - I.cols, BORDER_CONSTANT, Scalar::all(0));
将原始的图像I 扩充为理想的大小放在padded里面。
Mat planes[] = {Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F)};
Mat complexI;
merge(planes, 2, complexI); // 为延扩后的图像增添一个初始化为0的通道
然后便能够进行傅里叶变换了:
dft(complexI, complexI); // 变换结果非常好的保存在原始矩阵中
得到的结果有两部分。实数部分和虚数部分,你能够分别对这两部分进行操作:
split(complexI, planes); // planes[0] = Re(DFT(I), planes[1] = Im(DFT(I))
magnitude(planes[0], planes[1], planes[0]);// planes[0] = magnitude
Mat magI = planes[0];
当然还能够进行:归一化:
normalize(magI, magI, 0, 1, CV_MINMAX); // 将float类型的矩阵转换到可显示图像范围
// (float [0。 1]).
#include "opencv2/core/core.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include
C 为什么是这种勒?想想一个特殊的样例就知道了:
当A,B尺寸相等的时候,这个时候的高斯滤波得到的也就是中心点的那一个值(卷积核滤波的区别在于须要绕中心180度旋转)。
C.create(abs(A.rows - B.rows)+1, abs(A.cols - B.cols)+1, A.type());
MulSpectrums 是对于两张频谱图中每个元素的乘法。
void cvMulSpectrums( const CvArr* src1, const CvArr* src2, CvArr* dst, int flags );
src1
第一输入数组
src2
第二输入数组
dst
输出数组,和输入数组有同样的类型和大小。
flags
以下列举的值的组合:
CV_DXT_ROWS - 把数组的每一行视为一个单独的频谱 (參见 cvDFT 的參数讨论).
CV_DXT_MUL_CONJ - 在做乘法之前取第二个输入数组的共轭.
第四个參数flag值没有指定,应指定为DFT_COMPLEX_OUTPUT或是DFT_REAL_OUTPUT.