R语言混合时间模型预测对时间序列进行点估计

原文连接:http://tecdat.cn/?p=6078

混合预测 - 单模型预测的平均值 - 通常用于产生比任何预测模型更好的点估计。我展示了如何为混合预测构建预测区间,这种预测的覆盖范围比最常用的预测区间更准确(即80%的实际观测结果确实在80%置信区间内)。

预测间隔

预报员的问题是在预测组合中使用的预测间隔。预测间隔是与置信区间相似但不相同的概念。预测间隔是对尚未知但将在未来的某个点观察到的值(或更确切地说,可能值的范围)的估计。而置信区间是对基本上不可观察的参数的可能值范围的估计。预测间隔需要考虑模型中的不确定性,模型中参数的不确定估计(即那些参数的置信区间),以及与预测的特定点相关联的个体随机性。

介绍hybridf()

我喜欢结合auto.arima()ets(),有效地进行混合预测。为了使更方便,我创建了一个hybridf()在R中为我做这个并生成类对象的函数forecast

library(devtools)
install_github("robjhyndman/forecast") # development version needed sorry
library(forecast)

R语言混合时间模型预测对时间序列进行点估计_第1张图片

深灰色区域是80%预测区间,浅灰色区域是95%预测区间。 


测试M3

结果如下:

变量

准确度

ets_p80

0.75

ets_p95

0.90

auto.arima_p80

0.74

auto.arima_p95

0.88

hybrid_p80

0.83

hybrid_p95

0.94

我的混合方法有在接近广告的成功率,而这两个预测区间ets()auto.arima()不太成功。

以下是我在M3数据上测试的方法。我构建了一个小函数pi_accuracy()来帮助,它利用了类预测对象返回一个名为“lower”的矩阵和另一个名为“upper”的矩阵,每个预测区间级别都有一列。

#------------------setup------------------------

library(forecast)
 ly = "myfont"))

pi_accuracy <- function(fc, yobs){
   # checks the success of prediction intervals of an object of class 
 
   In <- (yobsm  
 }

实际上拟合所有预测相对简单。我的笔记本电脑花了大约一个小时。

#============forecasting with default values===============
num_series <- length(M3) # ie 3003
results <- matrix(0, nrow = num_series, ncol = 7)

for(i in 1:num_series){
   cat(i, " ")        # let me know how it's going as it loops through...
   series <- M3[[i]]
 ccess
   
   fc1 <- fc3$fc_ets
   r 
   geom_smooth(se = FALSE, method = "lm") +
   theme(panel.grid.minor = element_blank())

R语言混合时间模型预测对时间序列进行点估计_第2张图片

预测

变量

准确度

ets_p80

0.72

ets_p95

0.88

auto.arima_p80

0.70

auto.arima_p95

0.86

hybrid_p80

0.80

hybrid_p95

0.92

#=====with bootstrapping instead of formulae for the prediction intervals=============

num_series <- length(M3)
resultsb <- matrix(0, nrow = num_series, ncol = 7)

for(i in 1:num_series){
   cat(i, " ")
   
   gather(variable, value, -h) %>%
   mutate(weighted_val ighted_value) / sum(h), 2))

结论

  • 根据M3竞赛数据进行测试hybridf(),通过组合ets()auto.arima()形成的预测到期望的水平,即80%预测interval在80%的时间内包含真值,95%的预测间隔包含不到95%的时间的真值。

你可能感兴趣的:(r语言,时间)