PyTorch实现猫狗识别VGG

转载:https://magolor.cn/2020/01/14/2020-01-14-blog-01/

Kaggle 猫狗识别比赛地址:https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition/

上不到的也可以用我用PanDownload搜出来的:

链接:https://pan.baidu.com/s/1eUULKk-w3c8nNh8iBv-x-g 
提取码:lywk 

 

电脑配置:

CPU:i5-4590 3.30GHz

内存:8GB

显卡:影驰GTX1050Ti 4GB

运行环境:

PyCharm Professional 2019.3

Python 3.7.4

anaconda 4.8.2

torch 1.4.0

torchvision 0.5.0

 

import torch
import torch.nn as nn
import torch.optim as optim
import torch.utils.data as data
import matplotlib.pyplot as plt
import torchvision.transforms as transforms
from PIL import Image
import pandas as pd
import numpy as np
import math
import time
import os
import gc

# Configurations
torch.cuda.empty_cache()
INPUT_PATH = "D:\\PythonWork"
OUTPUT_PATH = "D:\\PythonWork"
ORIGIN_DATA_SIZE = 12500
TARGET_DATA_SIZE = 12500
RATIO = 0.99
EPOCH = 10
BATCH_SIZE = 2
LOSS_FUNC = nn.BCELoss()
LR = 0.0001
SWITCH = 3
UPDATE = 5
TRANSFORM = transforms.Compose([transforms.Resize((256,256)),
                                transforms.RandomCrop((224,224)),
                                transforms.ToTensor(),
                                transforms.Normalize((0.485,0.456,0.406),(0.229,0.224,0.225))
                               ])
PARAMETERS = ""

class ImageDataset(data.Dataset):
    def __init__(self, image_list, label_list):
        self.data = image_list
        self.label = label_list

    def __getitem__(self, index):
        global TRANSFORM
        img = Image.open(self.data[index])
        data = TRANSFORM(img)
        img.close()
        return data.cuda(),torch.cuda.FloatTensor([self.label[index]])

    def __len__(self):
        return len(self.data)

class VGG(nn.Module):
    def __init__(self, name="11"):
        super(VGG, self).__init__()
        self.name = "VGG"+name
        self.conv = nn.Sequential()
        i = 1; p = 1
        self.conv.add_module('conv-{0}'.format(i),nn.Conv2d(in_channels=  3, out_channels= 64, kernel_size=3, stride=1, padding=1))
        self.conv.add_module('ReLU-{0}'.format(i),nn.ReLU());i+=1
        if name in ["13","16-1","16","19"]:
            self.conv.add_module('conv-{0}'.format(i),nn.Conv2d(in_channels= 64, out_channels= 64, kernel_size=3, stride=1, padding=1))
            self.conv.add_module('ReLU-{0}'.format(i),nn.ReLU());i+=1
        if name in ["11-LRN"]:
            self.conv.add_module('LRN',nn.LocalResponseNorm(size=2))
        self.conv.add_module('MaxPooling-{0}'.format(p),nn.MaxPool2d(kernel_size=2, stride=2));p+=1   # 224 -> 112

        self.conv.add_module('conv-{0}'.format(i),nn.Conv2d(in_channels= 64, out_channels=128, kernel_size=3, stride=1, padding=1))
        self.conv.add_module('ReLU-{0}'.format(i),nn.ReLU());i+=1
        if name in ["13","16-1","16","19"]:
            self.conv.add_module('conv-{0}'.format(i),nn.Conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=1, padding=1))
            self.conv.add_module('ReLU-{0}'.format(i),nn.ReLU());i+=1
        self.conv.add_module('MaxPooling-{0}'.format(p),nn.MaxPool2d(kernel_size=2, stride=2));p+=1   # 112 -> 56

        self.conv.add_module('conv-{0}'.format(i),nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1))
        self.conv.add_module('ReLU-{0}'.format(i),nn.ReLU());i+=1
        self.conv.add_module('conv-{0}'.format(i),nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1))
        self.conv.add_module('ReLU-{0}'.format(i),nn.ReLU());i+=1
        if name in ["16","19"]:
            self.conv.add_module('conv-{0}'.format(i),nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1))
            self.conv.add_module('ReLU-{0}'.format(i),nn.ReLU());i+=1
        if name in ["16-1"]:
            self.conv.add_module('conv-{0}'.format(i),nn.Conv2d(in_channels=256, out_channels=256, kernel_size=1, stride=1, padding=0))
            self.conv.add_module('ReLU-{0}'.format(i),nn.ReLU());i+=1
        if name in ["19"]:
            self.conv.add_module('conv-{0}'.format(i),nn.Conv2d(in_channels=256, out_channels=256, kernel_size=3, stride=1, padding=1))
            self.conv.add_module('ReLU-{0}'.format(i),nn.ReLU());i+=1
        self.conv.add_module('MaxPooling-{0}'.format(p),nn.MaxPool2d(kernel_size=2, stride=2));p+=1   # 56 -> 28

        self.conv.add_module('conv-{0}'.format(i),nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, stride=1, padding=1))
        self.conv.add_module('ReLU-{0}'.format(i),nn.ReLU());i+=1
        self.conv.add_module('conv-{0}'.format(i),nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1))
        self.conv.add_module('ReLU-{0}'.format(i),nn.ReLU());i+=1
        if name in ["16","19"]:
            self.conv.add_module('conv-{0}'.format(i),nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1))
            self.conv.add_module('ReLU-{0}'.format(i),nn.ReLU());i+=1
        if name in ["16-1"]:
            self.conv.add_module('conv-{0}'.format(i),nn.Conv2d(in_channels=512, out_channels=512, kernel_size=1, stride=1, padding=0))
            self.conv.add_module('ReLU-{0}'.format(i),nn.ReLU());i+=1
        if name in ["19"]:
            self.conv.add_module('conv-{0}'.format(i),nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1))
            self.conv.add_module('ReLU-{0}'.format(i),nn.ReLU());i+=1
        self.conv.add_module('MaxPooling-{0}'.format(p),nn.MaxPool2d(kernel_size=2, stride=2));p+=1   # 28 -> 14

        self.conv.add_module('conv-{0}'.format(i),nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1))
        self.conv.add_module('ReLU-{0}'.format(i),nn.ReLU());i+=1
        self.conv.add_module('conv-{0}'.format(i),nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1))
        self.conv.add_module('ReLU-{0}'.format(i),nn.ReLU());i+=1
        if name in ["16","19"]:
            self.conv.add_module('conv-{0}'.format(i),nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1))
            self.conv.add_module('ReLU-{0}'.format(i),nn.ReLU());i+=1
        if name in ["16-1"]:
            self.conv.add_module('conv-{0}'.format(i),nn.Conv2d(in_channels=512, out_channels=512, kernel_size=1, stride=1, padding=0))
            self.conv.add_module('ReLU-{0}'.format(i),nn.ReLU());i+=1
        if name in ["19"]:
            self.conv.add_module('conv-{0}'.format(i),nn.Conv2d(in_channels=512, out_channels=512, kernel_size=3, stride=1, padding=1))
            self.conv.add_module('ReLU-{0}'.format(i),nn.ReLU());i+=1
        self.conv.add_module('MaxPooling-{0}'.format(p),nn.MaxPool2d(kernel_size=2, stride=2));p+=1   # 14 -> 7

        self.fc = nn.Sequential(
            nn.Linear(512*7*7,4096),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(4096,4096),
            nn.ReLU(),
            nn.Dropout(0.5),
            nn.Linear(4096,1000),
            nn.ReLU(),
            nn.Linear(1000,1),
            nn.Sigmoid()
        )

    def forward(self, x):
        x = self.conv(x)
        x = x.view(x.shape[0], -1)
        x = self.fc(x)
        return x

def train(optimizer):
    global net
    global EPOCH
    global BATCH_SIZE
    global train_data
    global validate_data
    global PROGRAM_START
    print('['+net.name+'] with optimizer ['+str(type(optimizer))+']:')
    train_loader = data.DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=0)
    validate_loader = data.DataLoader(validate_data, batch_size=1, shuffle=False, num_workers=0)
    BATCH = len(train_loader)
    m = len(validate_loader)
    for epoch in range(EPOCH):
        EPOCH_START = time.time()
        print("\\tEpoch #{0}\\{1}:".format(epoch+1,EPOCH))
        for batch,(x,y) in enumerate(train_loader):
            optimizer.zero_grad()
            t = net(x)
            loss = LOSS_FUNC(t,y)
            print("\\t\\tBatch #{0}\\{1}: ".format(batch+1,BATCH) + "Loss = %.6f"%float(loss))
            loss.backward()
            optimizer.step()
        with torch.no_grad():
            L = 0.
            E = 0.
            for batch,(x,y) in enumerate(validate_loader):
                t = net(x)
                L += float(LOSS_FUNC(t,y))
                E += float((float(t[0][0])>0.5)!=y)
            print("\t  Validation Loss = %.6f. Error Rate = %.3f%%"%(L/m,E*100/m))
            if((epoch+1)%UPDATE==0):
                torch.save(net.state_dict(),OUTPUT_PATH+"\\{0}[{1}]".format(net.name,epoch+1)+"-L(%.6f)E(%.3f).pt"%(L/m,E*100/m))
                torch.save(optimizer.state_dict(),OUTPUT_PATH+"\\{0}[{1}]".format(net.name,epoch+1)+"-L(%.6f)E(%.3f)-optimizer.pt"%(L/m,E*100/m))
        print("\t  Finish epoch #{0}".format(epoch+1)+" in %.4f s."%(time.time()-EPOCH_START)+" Total Time Cost = %.4f s."%(time.time()-PROGRAM_START))

def run(filename):
    global net
    global test_data
    prediction = []
    test_loader = data.DataLoader(test_data, batch_size=1, shuffle=False, num_workers=0)
    with torch.no_grad():
        for i,(x,y) in enumerate(test_loader):
            t = net(x)
            prediction.append([i+1,float(t[0][0])])
    submission = pd.DataFrame(prediction)
    submission.columns = ['id','label']
    submission.to_csv(filename+".csv",index=0)

def load():
    np.random.seed(998244353)
    torch.manual_seed(998244353)
    image_list = []
    label_list = []
    for i in range(ORIGIN_DATA_SIZE):
        image_list.append(INPUT_PATH+"\\train\\cat.{0}.jpg".format(i))
        label_list.append(0)
        image_list.append(INPUT_PATH+"\\train\\dog.{0}.jpg".format(i))
        label_list.append(1)
    n = int(ORIGIN_DATA_SIZE*2*RATIO)
    train_data = ImageDataset(image_list[:n],label_list[:n])
    validate_data = ImageDataset(image_list[n:],label_list[n:])
    image_list = []
    for i in range(TARGET_DATA_SIZE):
        image_list.append(INPUT_PATH+"\\test\\{0}.jpg".format(i+1))
    test_data = ImageDataset(image_list,[0]*TARGET_DATA_SIZE)
    # np.random.seed()
    # torch.seed()
    return train_data,validate_data,test_data

print("*****Start")
PROGRAM_START = time.time()
train_data,validate_data,test_data = load()
print("Finish reading data in %.4f s."%(time.time()-PROGRAM_START))
net = VGG("11")
if SWITCH//2==1 and PARAMETERS!="":
    net.load_state_dict(torch.load(PARAMETERS+".pt"))
    print("Load Model ["+PARAMETERS+".pt] Success!")
net.cuda()
optimizer = optim.RMSprop(net.parameters(), lr=LR, alpha=0.9)
if SWITCH//2==1 and PARAMETERS!="":
    optimizer.load_state_dict(torch.load(PARAMETERS+"-optimizer.pt"))
    print("Load Optimizer ["+PARAMETERS+"-optimizer.pt] Success!")
LOSS_FUNC.cuda()
if SWITCH% 2==1:
    train(optimizer)
TRANSFORM = transforms.Compose([transforms.Resize((224,224)),
                                transforms.ToTensor(),
                                transforms.Normalize((0.485,0.456,0.406),(0.229,0.224,0.225))
                               ])
run(OUTPUT_PATH+"\\{0}".format(net.name))
print("*****Finish")

INPUT_PATH,OUTPUR_PATH是猫狗图片的地址和输出的地址。

EPOCH如果赶时间可以适当改小,原文是15个,我这里改成了10个。

BATCH_SIZE 原文是75,因为我运行的时候报错说显存不够,我直接改成了最小的2,显卡够强的可以适当调高。

SWITCH 来控制程序运行,1表示训练,2表示载入现成模型。那么如果SWITCH=1就训练现成模型然后预测,SWITCH=2就载入现成模型然后预测,SWITCH=3就载入现成模型,训练后预测。

209行的VGG 原文用VGG19,我运行VGG19太慢了,就改成VGG11了。

PyTorch实现猫狗识别VGG_第1张图片

最终运行的结果,有点丢人,每个EPOCH都要运行11000s,花了一大个下午的时间就这样,所以说电脑不好就不要玩了...

输出的文件也是乱码,暂时没办法查看到什么内容。

另外,点击运行之后,cpu就会飙到100,显存占满,电源使用情况非常高,所以心疼电费也不要搞了...

你可能感兴趣的:(PyTorch实现猫狗识别VGG)