- 【华为OD技术面试真题 - 技术面】- python八股文真题题库(1)
算法大师
华为od面试python
华为OD面试真题精选专栏:华为OD面试真题精选目录:2024华为OD面试手撕代码真题目录以及八股文真题目录文章目录华为OD面试真题精选1.数据预处理流程数据预处理的主要步骤工具和库2.介绍线性回归、逻辑回归模型线性回归(LinearRegression)模型形式:关键点:逻辑回归(LogisticRegression)模型形式:关键点:参数估计与评估:3.python浅拷贝及深拷贝浅拷贝(Shal
- 自然语言处理_tf-idf
_feivirus_
算法机器学习和数学自然语言处理tf-idf逆文档频率词频
importpandasaspdimportmath1.数据预处理docA="Thecatsatonmyface"docB="Thedogsatonmybed"wordsA=docA.split("")wordsB=docB.split("")wordsSet=set(wordsA).union(set(wordsB))print(wordsSet){'on','my','face','sat',
- K近邻算法_分类鸢尾花数据集
_feivirus_
算法机器学习和数学分类机器学习K近邻
importnumpyasnpimportpandasaspdfromsklearn.datasetsimportload_irisfromsklearn.model_selectionimporttrain_test_splitfromsklearn.metricsimportaccuracy_score1.数据预处理iris=load_iris()df=pd.DataFrame(data=ir
- 数据分析-24-时间序列预测之基于keras的VMD-LSTM和VMD-CNN-LSTM预测风速
皮皮冰燃
数据分析数据分析
文章目录1普通的LSTM模型1.1数据重采样1.2数据标准化1.3切分窗口1.4划分数据集1.5建立模型1.6预测效果2VMD-LSTM模型2.1VMD分解时间序列2.2对每一个IMF建立LSTM模型2.2.1IMF1—LSTM2.2.2IMF2-LSTM2.2.3统一代码2.3评估效果3CNN-LSTM模型3.1数据预处理3.2建立模型3.3效果预测4VMD-CNN-LSTM模型4.1VMD分解
- Python数据分析及可视化教程--商城订单为例-适用电商相关进行数据分析---亲测可用!!!!
Dreams°123
AIGC机器学习python测试工具数据分析大数据
前言:Python是进行数据分析和可视化的强大工具,常用的库包括Pandas、NumPy、Matplotlib和Seaborn。以下是一个基本的教程概述,介绍了如何使用这些库来进行数据分析和可视化:Python数据分析及可视化教程1、环境准备2、数据准备3、开始数据分析3.1、导入库3.2、加载数据3.3、数据预处理3.4、数据分析3.5、数据可视化4、总结解释使用方法:5、错误处理和异常判断说明
- 【机器学习】朴素贝叶斯
可口的冰可乐
机器学习机器学习概率论
3.朴素贝叶斯素贝叶斯算法(NaiveBayes)是一种基于贝叶斯定理的简单而有效的分类算法。其“朴素”之处在于假设各特征之间相互独立,即在给定类别的条件下,各个特征是独立的。尽管这一假设在实际中不一定成立,合理的平滑技术和数据预处理仍能使其在许多任务中表现良好。优点:速度快:由于朴素贝叶斯仅需计算简单的概率,训练和预测的速度非常快。适用于高维数据:即使在特征数量多的情况下,朴素贝叶斯仍然表现良好
- 第3篇:LangChain的架构总览与设计理念
Gemini技术窝
langchain架构大数据人工智能AIGCnlp
LangChain库是一个专为自然语言处理(NLP)设计的强大工具包,致力于简化复杂语言模型链的构建和执行。在本文中,我们将深入解析LangChain库的架构,详细列出其核心组件、设计理念及其在不同场景中的应用,并讨论其优缺点。文章目录1.LangChain库简介2.核心组件2.1数据输入模块作用2.2数据预处理模块作用2.3数据增强模块作用2.4数据加载与批处理模块作用2.5模型训练模块作用2.
- 大模型算法岗,面试百问百答,7天3个offer拿到手!
爱喝白开水a
算法面试职场和发展ai大模型大语言模型LLM大模型面试
导读大模型时代很多企业都在开发自己的大模型,这直接刺激了大模型岗位的需求。本文为大家整理了大模型面试相关的知识点,希望对大家面试求职有所帮助。今天分享大模型面试相关知识点,持续更新。1.RAG技术体系的总体思路数据预处理->分块(这一步骤很关键,有时候也决定了模型的效果)->文本向量化->query向量化->向量检索->重排->query+检索内容输入LLM->输出2.使用外挂知识库主要为了解决什
- 【题目】数据分析与数据思维选择题
天启和风
大数据题目数据分析数据挖掘大数据
1.以下选项中不属于数据预处理的是()A.数据清理B.数据可视化C.数据变换D.数据集成解析:选B。数据清洗指对数据集中的不完整、不合理或不准确的数据进行修补、去重、纠错、修补或删除数据变换将原始数据变换成符合目标算法要求的数据数据集成指对来自不同的数据源的数据进行集成处理2.用来描述访问了某个项目一次就退出的次数和这个项目总访问的次数的比率的基础指标是_?A.跳失率B.费效比C.渠道转换率D.访
- 数据采集与数据预处理(python)概述(一)
数学难
python开发语言
一,数据采集的概念在处理海量事务时,我们经常需要针对特定条件进行数据的精准获取,这一过程被称为数据采集。数据采集的核心在于从多样化的数据存储形式中,根据具体需求进行有针对性的数据提取。这些数据存储形式丰富多样,涵盖了从简单的文本文档到复杂的数据库系统,再到多媒体文件等多个领域。常见的数据存储方式包括:文件系统(FileSystem):文本文档:TXT,DOC,PDF,XLS(Excel),CSV等
- 第三章-数据预处理
moke冲冲
数据预处理的主要内容包括数据清洗、数据集成、数据变换和数据规约。3.1数据清洗数据清洗主要是删除原始数据集中的无关数据,重复数据,平滑噪声数据,筛选掉与挖掘主题无关的数据,处理缺失值,异常值等。3.1.1缺失值处理处理缺失值的方法可分为三类:删除记录、数据插补和不处理常用的插补方法如下图插值法:拉格朗日插值法,牛顿插值法拉格朗日插值法详解:https://www.zhihu.com/questio
- Java中的数据降维技术:如何实现PCA和t-SNE
省赚客app开发者
javapython人工智能
Java中的数据降维技术:如何实现PCA和t-SNE大家好,我是微赚淘客系统3.0的小编,是个冬天不穿秋裤,天冷也要风度的程序猿!在这篇文章中,我们将探讨如何在Java中实现数据降维技术,特别是主成分分析(PCA)和t-SNE。这两种技术在数据预处理和可视化中非常重要,它们帮助我们将高维数据转换为低维数据,保留数据的主要特征。主成分分析(PCA)主成分分析(PCA)是一种线性降维技术,用于将数据从
- 数据清洗:信息时代的黄金前奏
ShiTuanWang
数据挖掘数据分析人工智能数据治理数据清洗
数据清洗:信息时代的黄金前奏在当今这个数据驱动的时代,信息已成为社会发展的重要资源。企业、政府乃至个人,都依赖于数据分析来指导决策、优化流程、预测趋势。然而,在数据从产生到应用的整个链条中,一个至关重要的环节往往被忽视或低估,那就是数据清洗(DataCleaning)。数据清洗,作为数据预处理的核心步骤,其重要性不言而喻,它是确保数据质量、提升数据分析准确性与效率的关键所在。一、数据清洗的定义与意
- 三国演义python分析系统_Python之三国演义(上)
weixin_40002692
三国演义python分析系统
一、设计实现详细说明1.1任务详细描述以中国四大名著之一——《三国演义》为蓝本,结合python数据分析知识进行本次的文本分析。《三国演义》全书共120回。本次的分析主要基于统计分析、文本挖掘等知识。1.2设计思路详细描述数据准备、数据预处理、分词等全书各个章节的字数、词数、段落等相关方面的关系整体词频和词云的展示全书各个章节进行聚类分析并可视化,主要进行了根据IF-IDF的系统聚类和根据词频的L
- PLC边缘网关在实际应用中的作用-天拓四方
北京天拓四方
边缘计算物联网iot
随着工业自动化的快速发展,PLC已成为工业自动化领域中不可或缺的核心设备。然而,随着工业物联网的兴起,PLC设备面临着数据集成、远程监控以及安全性等方面的挑战。为了解决这些问题,PLC边缘网关应运而生,它作为连接PLC设备与上层应用系统的桥梁,发挥着至关重要的作用。PLC边缘网关是一种部署在工厂网络边缘的设备,它具备数据采集、协议转换、数据预处理、安全防护等功能。通过PLC边缘网关,可以实现PLC
- 图像去噪算法代码c语言,深度学习图像去噪代码
weixin_39777018
图像去噪算法代码c语言
AI开发平台ModelArtsModelArts是面向开发者的一站式AI开发平台,为机器学习与深度学习提供海量数据预处理及半自动化标注、大规模分布式Training、自动化模型生成,及端-边-云模型按需部署能力,帮助用户快速创建和部署模型,管理全周期AI工作流。按需/包周期付费可选,最低0.00元/小时导入操作||https://support.huaweicloud.com/engineers-
- Python数据分析详解(适合新手的详细教程)
码农必胜客
Python零基础入门python数据分析开发语言
前言这篇文章主要介绍了Python中的数据分析详解,对数据进行分析。数据分析是指根据分析目的,用适当的统计分析方法及工具,对收集来的数据进行处理与分析,提取有价值的信息,发挥数据的作用。目录数据分析概述python在数据分析方面有哪些优势数据的导入和导出导入数据导出数据数据预处理数据的选择和运算数据分类汇总和统计时间序列数据可视化数据分析概述python在数据分析方面有哪些优势Python不受数据
- 经典网络训练图像分类模型一
三十度角阳光的问候
分类数据挖掘人工智能
目录数据预处理部分:网络模块设置:网络模型保存与测试数据读取与预处理操作制作好数据源:读取标签对应的实际名字加载models中提供的模型,并且直接用训练的好权重当做初始化参数模型参数更新把模型输出层改成自己的设置哪些层需要训练优化器设置数据预处理部分:-数据增强:torchvision中transforms模块自带功能,比较实用-数据预处理:torchvision中transforms也帮我们实现
- Java在智能数据挖掘系统的应用
lizi88888
java数据挖掘开发语言
智能数据挖掘系统是利用机器学习、统计分析等技术从大量数据中自动或半自动地发现模式和知识的系统。Java作为一种流行的编程语言,因其强大的性能和丰富的生态系统,在智能数据挖掘领域的应用非常广泛。本文将探讨Java在智能数据挖掘系统中的应用,并提供示例代码。智能数据挖掘系统概述智能数据挖掘系统通常具备以下功能:数据预处理:包括数据清洗、归一化、特征选择等。模式识别:识别数据中的模式,如分类、聚类、关联
- 【大模型实战篇】大模型周边NLP技术回顾及预训练模型数据预处理过程解析(预告)
源泉的小广场
大模型自然语言处理人工智能大模型LLM预训练模型数据预处理高质量数据
1.背景介绍进入到大模型时代,似乎宣告了与过去自然语言处理技术的结束,但其实这两者并不矛盾。大模型时代,原有的自然语言处理技术,依然可以在大模型的诸多场景中应用,特别是对数据的预处理阶段。本篇主要关注TextCNN、FastText和Word2Vec等低成本的自然语言处理技术,如何在大模型时代发挥其余热。今天先抛出这个主题预告,接下来会花些时间,逐步细化分析这些周边技术的算法原理、数学分析以及大模
- 第T4周:使用TensorFlow实现猴痘病识别
oufoc
tensorflow人工智能python
本文为365天深度学习训练营中的学习记录博客原作者:K同学啊文章目录一、前期工作1.设置GPU(如果使用的是CPU可以忽略这步)2.导入数据3.查看数据二、数据预处理1、加载数据2、数据可视化3、再次检查数据4、配置数据集三、构建CNN网络四、编译五、训练模型六、模型评估1.Loss与Accuracy图2.指定图片进行预测七、优化1、使用`model.evaluate`使用测试集评估模型2、网络结
- 识别实验笔记和经验总结
Wils0nEdwards
笔记
1.跑对比实验之前,首先保证对比的公平性和可靠性!在进行图像分类模型对比实验时,为了确保对比的公平性和可靠性,以下几个因素需要重点考虑:数据集的一致性:数据集分割:确保训练集、验证集和测试集的划分是一致的。各模型使用相同的训练数据和测试数据。数据集大小:确保数据集的样本数量充足且具有代表性,避免数据集过小导致结果不具备普遍性。数据预处理:图像预处理方法:所有模型使用相同的预处理方法(如归一化、裁剪
- 基于人工智能的智能客服系统
嵌入式详谈
人工智能
目录引言项目背景客服系统的现状与挑战AI在客服领域的应用前景系统设计系统架构模块划分关键技术与实现自然语言处理(NLP)对话管理语音识别与合成情感分析数据准备与训练数据收集数据预处理模型训练系统集成与部署前端接口设计后端服务实现系统集成部署方案测试与优化系统测试性能优化用户反馈与迭代应用场景与案例分析电子商务客服银行与金融服务医疗健康咨询常见问题及解决方案常见问题解决方案未来发展与展望结论1.引言
- 基于人工智能的文本情感分析系统
嵌入式详谈
人工智能
目录引言项目背景环境准备硬件要求软件安装与配置系统设计系统架构关键技术代码示例数据预处理模型训练模型预测应用场景结论1.引言文本情感分析是一种自然语言处理技术,用于识别和提取文本中的情感信息。该技术在市场分析、产品评价、社交媒体监控等领域具有广泛应用。本文介绍一个基于人工智能的文本情感分析系统,重点介绍环境准备、系统设计及实现。2.项目背景随着社交媒体和电商平台的普及,用户生成的文本数据量急剧增加
- 《昇思25天学习打卡营第1天|快速入门》
一只IT攻城狮
其他学习
昇思MindSpore介绍昇思MindSpore是一个全场景深度学习框架,旨在实现易开发、高效执行、全场景统一部署三大目标。其中,易开发表现为API友好、调试难度低;高效执行包括计算效率、数据预处理效率和分布式训练效率;全场景则指框架同时支持云、边缘以及端侧场景。实操本节通过MindSpore的API来快速实现一个简单的深度学习模型。MindSpore提供基于Pipeline的数据引擎,通过数据集
- 基于分布式计算的电商系统设计与实现【系统设计、模型预测、大屏设计、海量数据、Hadoop集群】
王小王-123
hadoop大数据分布式电商系统分析分布式计算
文章目录==有需要本项目的代码或文档以及全部资源,或者部署调试可以私信博主==项目展示项目介绍目录摘要Abstract1引言1.1研究背景1.2国内外研究现状1.3研究目的1.4研究意义2关键技术理论介绍2.1Hadoop相关组件介绍2.2分布式集群介绍2.3Pyecharts介绍2.4Flask框架3分布式集群搭建及数据准备3.1Hadoop全套组件搭建3.2数据集介绍3.3数据预处理4分布式计
- 生产环境中MapReduce的最佳实践
大数据深度洞察
Hadoopmapreduce大数据
目录MapReduce跑的慢的原因MapReduce常用调优参数1.MapTask相关参数2.ReduceTask相关参数3.总体调优参数4.其他重要参数调优策略MapReduce数据倾斜问题1.数据预处理2.自定义Partitioner3.调整Reduce任务数4.小文件问题处理5.二次排序6.使用桶表7.使用随机前缀8.参数调优实施步骤MapReduce跑的慢的原因MapReduce程序效率的
- 机器学习小组第三周:简单的数据预处理和特征工程
-Helslie
机器学习机器学习
学习目标●无量纲化:最值归一化、均值方差归一化及sklearn中的Scaler●缺失值处理●处理分类型特征:编码与哑变量●处理连续型特征:二值化与分段学习资料首先,参考:《机器学习的敲门砖:归一化与KD树》及《特征工程系列:特征预处理(上)》中相关部分。其次,其他知识点可参考推荐博文:sklearn中的数据预处理和特征工程。20200311数据归一化在量纲不同的情况下,对于部分算法不能反映样本中每
- 回归预测|基于卷积神经网络-鲸鱼优化-最小二乘支持向量机的数据回归预测Matlab程序 CNN-WOA-LSSVM
机器不会学习CL
回归预测智能优化算法回归cnn支持向量机
回归预测|基于卷积神经网络-鲸鱼优化-最小二乘支持向量机的数据回归预测Matlab程序CNN-WOA-LSSVM文章目录一、基本原理1.数据预处理2.特征提取(CNN)3.参数优化(WOA)4.模型训练(LSSVM)5.模型评估和优化6.预测总结二、实验结果三、核心代码四、代码获取五、总结回归预测|基于卷积神经网络-鲸鱼优化-最小二乘支持向量机的数据回归预测Matlab程序CNN-WOA-LSSV
- PyTorch 基础学习(14)- 归一化
花千树-010
PyTorchpytorch学习人工智能
系列文章:《PyTorch基础学习》文章索引概述归一化是数据预处理中的重要步骤之一,它可以将数据调整到特定的范围或分布,有助于加速训练并提高模型的性能。在机器学习中,不同的归一化方法适用于不同的场景。本文将详细介绍scikit-learn中的常见归一化方法及其应用。1.Min-Max归一化MinMaxScalerMin-Max归一化将数据缩放到指定范围,通常是[0,1]。这种方法保留了数据的相对关
- Algorithm
香水浓
javaAlgorithm
冒泡排序
public static void sort(Integer[] param) {
for (int i = param.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
int current = param[j];
int next = param[j + 1];
- mongoDB 复杂查询表达式
开窍的石头
mongodb
1:count
Pg: db.user.find().count();
统计多少条数据
2:不等于$ne
Pg: db.user.find({_id:{$ne:3}},{name:1,sex:1,_id:0});
查询id不等于3的数据。
3:大于$gt $gte(大于等于)
&n
- Jboss Java heap space异常解决方法, jboss OutOfMemoryError : PermGen space
0624chenhong
jvmjboss
转自
http://blog.csdn.net/zou274/article/details/5552630
解决办法:
window->preferences->java->installed jres->edit jre
把default vm arguments 的参数设为-Xms64m -Xmx512m
----------------
- 文件上传 下载 解析 相对路径
不懂事的小屁孩
文件上传
有点坑吧,弄这么一个简单的东西弄了一天多,身边还有大神指导着,网上各种百度着。
下面总结一下遇到的问题:
文件上传,在页面上传的时候,不要想着去操作绝对路径,浏览器会对客户端的信息进行保护,避免用户信息收到攻击。
在上传图片,或者文件时,使用form表单来操作。
前台通过form表单传输一个流到后台,而不是ajax传递参数到后台,代码如下:
<form action=&
- 怎么实现qq空间批量点赞
换个号韩国红果果
qq
纯粹为了好玩!!
逻辑很简单
1 打开浏览器console;输入以下代码。
先上添加赞的代码
var tools={};
//添加所有赞
function init(){
document.body.scrollTop=10000;
setTimeout(function(){document.body.scrollTop=0;},2000);//加
- 判断是否为中文
灵静志远
中文
方法一:
public class Zhidao {
public static void main(String args[]) {
String s = "sdf灭礌 kjl d{';\fdsjlk是";
int n=0;
for(int i=0; i<s.length(); i++) {
n = (int)s.charAt(i);
if((
- 一个电话面试后总结
a-john
面试
今天,接了一个电话面试,对于还是初学者的我来说,紧张了半天。
面试的问题分了层次,对于一类问题,由简到难。自己觉得回答不好的地方作了一下总结:
在谈到集合类的时候,举几个常用的集合类,想都没想,直接说了list,map。
然后对list和map分别举几个类型:
list方面:ArrayList,LinkedList。在谈到他们的区别时,愣住了
- MSSQL中Escape转义的使用
aijuans
MSSQL
IF OBJECT_ID('tempdb..#ABC') is not null
drop table tempdb..#ABC
create table #ABC
(
PATHNAME NVARCHAR(50)
)
insert into #ABC
SELECT N'/ABCDEFGHI'
UNION ALL SELECT N'/ABCDGAFGASASSDFA'
UNION ALL
- 一个简单的存储过程
asialee
mysql存储过程构造数据批量插入
今天要批量的生成一批测试数据,其中中间有部分数据是变化的,本来想写个程序来生成的,后来想到存储过程就可以搞定,所以随手写了一个,记录在此:
DELIMITER $$
DROP PROCEDURE IF EXISTS inse
- annot convert from HomeFragment_1 to Fragment
百合不是茶
android导包错误
创建了几个类继承Fragment, 需要将创建的类存储在ArrayList<Fragment>中; 出现不能将new 出来的对象放到队列中,原因很简单;
创建类时引入包是:import android.app.Fragment;
创建队列和对象时使用的包是:import android.support.v4.ap
- Weblogic10两种修改端口的方法
bijian1013
weblogic端口号配置管理config.xml
一.进入控制台进行修改 1.进入控制台: http://127.0.0.1:7001/console 2.展开左边树菜单 域结构->环境->服务器-->点击AdminServer(管理) &
- mysql 操作指令
征客丶
mysql
一、连接mysql
进入 mysql 的安装目录;
$ bin/mysql -p [host IP 如果是登录本地的mysql 可以不写 -p 直接 -u] -u [userName] -p
输入密码,回车,接连;
二、权限操作[如果你很了解mysql数据库后,你可以直接去修改系统表,然后用 mysql> flush privileges; 指令让权限生效]
1、赋权
mys
- 【Hive一】Hive入门
bit1129
hive
Hive安装与配置
Hive的运行需要依赖于Hadoop,因此需要首先安装Hadoop2.5.2,并且Hive的启动前需要首先启动Hadoop。
Hive安装和配置的步骤
1. 从如下地址下载Hive0.14.0
http://mirror.bit.edu.cn/apache/hive/
2.解压hive,在系统变
- ajax 三种提交请求的方法
BlueSkator
Ajaxjqery
1、ajax 提交请求
$.ajax({
type:"post",
url : "${ctx}/front/Hotel/getAllHotelByAjax.do",
dataType : "json",
success : function(result) {
try {
for(v
- mongodb开发环境下的搭建入门
braveCS
运维
linux下安装mongodb
1)官网下载mongodb-linux-x86_64-rhel62-3.0.4.gz
2)linux 解压
gzip -d mongodb-linux-x86_64-rhel62-3.0.4.gz;
mv mongodb-linux-x86_64-rhel62-3.0.4 mongodb-linux-x86_64-rhel62-
- 编程之美-最短摘要的生成
bylijinnan
java数据结构算法编程之美
import java.util.HashMap;
import java.util.Map;
import java.util.Map.Entry;
public class ShortestAbstract {
/**
* 编程之美 最短摘要的生成
* 扫描过程始终保持一个[pBegin,pEnd]的range,初始化确保[pBegin,pEnd]的ran
- json数据解析及typeof
chengxuyuancsdn
jstypeofjson解析
// json格式
var people='{"authors": [{"firstName": "AAA","lastName": "BBB"},'
+' {"firstName": "CCC&
- 流程系统设计的层次和目标
comsci
设计模式数据结构sql框架脚本
流程系统设计的层次和目标
 
- RMAN List和report 命令
daizj
oraclelistreportrman
LIST 命令
使用RMAN LIST 命令显示有关资料档案库中记录的备份集、代理副本和映像副本的
信息。使用此命令可列出:
• RMAN 资料档案库中状态不是AVAILABLE 的备份和副本
• 可用的且可以用于还原操作的数据文件备份和副本
• 备份集和副本,其中包含指定数据文件列表或指定表空间的备份
• 包含指定名称或范围的所有归档日志备份的备份集和副本
• 由标记、完成时间、可
- 二叉树:红黑树
dieslrae
二叉树
红黑树是一种自平衡的二叉树,它的查找,插入,删除操作时间复杂度皆为O(logN),不会出现普通二叉搜索树在最差情况时时间复杂度会变为O(N)的问题.
红黑树必须遵循红黑规则,规则如下
1、每个节点不是红就是黑。 2、根总是黑的 &
- C语言homework3,7个小题目的代码
dcj3sjt126com
c
1、打印100以内的所有奇数。
# include <stdio.h>
int main(void)
{
int i;
for (i=1; i<=100; i++)
{
if (i%2 != 0)
printf("%d ", i);
}
return 0;
}
2、从键盘上输入10个整数,
- 自定义按钮, 图片在上, 文字在下, 居中显示
dcj3sjt126com
自定义
#import <UIKit/UIKit.h>
@interface MyButton : UIButton
-(void)setFrame:(CGRect)frame ImageName:(NSString*)imageName Target:(id)target Action:(SEL)action Title:(NSString*)title Font:(CGFloa
- MySQL查询语句练习题,测试足够用了
flyvszhb
sqlmysql
http://blog.sina.com.cn/s/blog_767d65530101861c.html
1.创建student和score表
CREATE TABLE student (
id INT(10) NOT NULL UNIQUE PRIMARY KEY ,
name VARCHAR
- 转:MyBatis Generator 详解
happyqing
mybatis
MyBatis Generator 详解
http://blog.csdn.net/isea533/article/details/42102297
MyBatis Generator详解
http://git.oschina.net/free/Mybatis_Utils/blob/master/MybatisGeneator/MybatisGeneator.
- 让程序员少走弯路的14个忠告
jingjing0907
工作计划学习
无论是谁,在刚进入某个领域之时,有再大的雄心壮志也敌不过眼前的迷茫:不知道应该怎么做,不知道应该做什么。下面是一名软件开发人员所学到的经验,希望能对大家有所帮助
1.不要害怕在工作中学习。
只要有电脑,就可以通过电子阅读器阅读报纸和大多数书籍。如果你只是做好自己的本职工作以及分配的任务,那是学不到很多东西的。如果你盲目地要求更多的工作,也是不可能提升自己的。放
- nginx和NetScaler区别
流浪鱼
nginx
NetScaler是一个完整的包含操作系统和应用交付功能的产品,Nginx并不包含操作系统,在处理连接方面,需要依赖于操作系统,所以在并发连接数方面和防DoS攻击方面,Nginx不具备优势。
2.易用性方面差别也比较大。Nginx对管理员的水平要求比较高,参数比较多,不确定性给运营带来隐患。在NetScaler常见的配置如健康检查,HA等,在Nginx上的配置的实现相对复杂。
3.策略灵活度方
- 第11章 动画效果(下)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- FAQ - SAP BW BO roadmap
blueoxygen
BOBW
http://www.sdn.sap.com/irj/boc/business-objects-for-sap-faq
Besides, I care that how to integrate tightly.
By the way, for BW consultants, please just focus on Query Designer which i
- 关于java堆内存溢出的几种情况
tomcat_oracle
javajvmjdkthread
【情况一】:
java.lang.OutOfMemoryError: Java heap space:这种是java堆内存不够,一个原因是真不够,另一个原因是程序中有死循环; 如果是java堆内存不够的话,可以通过调整JVM下面的配置来解决: <jvm-arg>-Xms3062m</jvm-arg> <jvm-arg>-Xmx
- Manifest.permission_group权限组
阿尔萨斯
Permission
结构
继承关系
public static final class Manifest.permission_group extends Object
java.lang.Object
android. Manifest.permission_group 常量
ACCOUNTS 直接通过统计管理器访问管理的统计
COST_MONEY可以用来让用户花钱但不需要通过与他们直接牵涉的权限
D