十一、套接字Socket
基于 TCP 和 UDP 协议的 Socket 编程。
Socket 编程进行的是端到端的通信,往往意识不到中间经过多少局域网,多少路由器,因而能够设置的参数,也只能是端到端协议之上网络层和传输层的。
在网络层,Socket 函数需要指定到底是 IPv4 还是 IPv6,分别对应设置为 AF_INET 和AF_INET6。另外,还要指定到底是 TCP 还是 UDP。还记得咱们前面讲过的,TCP 协议是基于数据流的,所以设置为 SOCK_STREAM,而 UDP 是基于数据报的,因而设置为SOCK_DGRAM。
基于 TCP 协议的 Socket 程序函数调用过程
TCP 的服务端要先监听一个端口,一般是先调用 bind 函数,给这个 Socket 赋予一个 IP地址和端口。为什么需要端口呢?要知道,你写的是一个应用程序,当一个网络包来的时候,内核要通过 TCP 头里面的这个端口,来找到你这个应用程序,把包给你。为什么要 IP地址呢?有时候,一台机器会有多个网卡,也就会有多个 IP 地址,你可以选择监听所有的网卡,也可以选择监听一个网卡,这样,只有发给这个网卡的包,才会给你。
当服务端有了 IP 和端口号,就可以调用 listen 函数进行监听。在 TCP 的状态图里面,有一个 listen 状态,当调用这个函数之后,服务端就进入了这个状态,这个时候客户端就可以发起连接了。
在内核中,为每个 Socket 维护两个队列。一个是已经建立了连接的队列,这时候连接三次握手已经完毕,处于 established 状态;一个是还没有完全建立连接的队列,这个时候三次握手还没完成,处于 syn_rcvd 的状态。 接下来,服务端调用 accept 函数,拿出一个已经完成的连接进行处理。如果还没有完成,就要等着。在服务端等待的时候,客户端可以通过 connect 函数发起连接。先在参数中指明要连接的IP 地址和端口号,然后开始发起三次握手。内核会给客户端分配一个临时的端口。一旦握手成功,服务端的 accept 就会返回另一个 Socket。
监听的 Socket 和真正用来传数据的 Socket 是两个,一个叫作监听 Socket,一个叫作已连接 Socket。
连接建立成功之后,双方开始通过 read 和 write 函数来读写数据,就像往一个文件流里面写东西一样。这个图就是基于 TCP 协议的 Socket 程序函数调用过程。
说 TCP 的 Socket 就是一个文件流,是非常准确的。因为,Socket 在 Linux 中就是以文件的形式存在的。除此之外,还存在文件描述符。写入和读出,也是通过文件描述符。在内核中,Socket 是一个文件,那对应就有文件描述符。每一个进程都有一个数据结构task_struct,里面指向一个文件描述符数组,来列出这个进程打开的所有文件的文件描述符。文件描述符是一个整数,是这个数组的下标。
这个数组中的内容是一个指针,指向内核中所有打开的文件的列表。既然是一个文件,就会有一个 inode,只不过 Socket 对应的 inode 不像真正的文件系统一样,保存在硬盘上的,而是在内存中的。在这个 inode 中,指向了 Socket 在内核中的 Socket 结构。在这个结构里面,主要的是两个队列,一个是发送队列,一个是接收队列。在这两个队列里面保存的是一个缓存 sk_buff。这个缓存里面能够看到完整的包的结构。看到这个,是不是能和前面讲过的收发包的场景联系起来了?整个数据结构如下:
基于 UDP 协议的 Socket 程序函数调用过程
对于 UDP 来讲,过程有些不一样。UDP 是没有连接的,所以不需要三次握手,也就不需要调用 listen 和 connect,但是,UDP 的的交互仍然需要 IP 和端口号,因而也需要bind。UDP 是没有维护连接状态的,因而不需要每对连接建立一组 Socket,而是只要有一个 Socket,就能够和多个客户端通信。也正是因为没有连接状态,每次通信的时候,都调用 sendto 和 recvfrom,都可以传入 IP 地址和端口。这个图的内容就是基于 UDP 协议的 Socket 程序函数调用过程。
服务器如何接更多的项目?
会了这几个基本的 Socket 函数之后,你就可以轻松地写一个网络交互的程序了。就像上面的过程一样,在建立连接后,进行一个 while 循环。客户端发了收,服务端收了发。
当然这只是万里长征的第一步,因为如果使用这种方法,基本上只能一对一沟通。如果你是一个服务器,同时只能服务一个客户,肯定是不行的。这就相当于老板成立一个公司,只有自己一个人,自己亲自上来服务客户。
最大连接数:
系统会用一个四元组来标识一个 TCP 连接。{本机 IP, 本机端口, 对端 IP, 对端端口}
服务器通常固定在某个本地端口上监听,等待客户端的连接请求。因此,服务端端 TCP 连接四元组中只有对端 IP, 也就是客户端的 IP 和对端的端口,也即客户端的端口是可变的,因此,最大 TCP 连接数 = 客户端 IP 数×客户端端口数。对 IPv4,客户端的 IP 数最多为 2的 32 次方,客户端的端口数最多为 2 的 16 次方,也就是服务端单机最大 TCP 连接数,约为 2 的 48 次方。
当然,服务端最大并发 TCP 连接数远不能达到理论上限。首先主要是文件描述符限制,按照上面的原理,Socket 都是文件,所以首先要通过 ulimit 配置文件描述符的数目;另一个限制是内存,按上面的数据结构,每个 TCP 连接都要占用一定内存,操作系统是有限的。
所以,作为老板,在资源有限的情况下,要想接更多的项目,就需要降低每个项目消耗的资源数目。
多进程方式
这就相当于你是一个代理,在那里监听来的请求。一旦建立了一个连接,就会有一个已连接Socket,这时候你可以创建一个子进程,然后将基于已连接 Socket 的交互交给这个新的子进程来做。
在 Linux 下,创建子进程使用 fork 函数。通过名字可以看出,这是在父进程的基础上完全拷贝一个子进程。在 Linux 内核中,会复制文件描述符的列表,也会复制内存空间,还会复制一条记录当前执行到了哪一行程序的进程。显然,复制的时候在调用 fork,复制完毕之后,父进程和子进程都会记录当前刚刚执行完 fork。这两个进程刚复制完的时候,几乎一模一样,只是根据 fork 的返回值来区分到底是父进程,还是子进程。如果返回值是 0,则是子进程;如果返回值是其他的整数,就是父进程。进程复制过程如下:
因为复制了文件描述符列表,而文件描述符都是指向整个内核统一的打开文件列表的,因而父进程刚才因为 accept 创建的已连接 Socket 也是一个文件描述符,同样也会被子进程获得。
接下来,子进程就可以通过这个已连接 Socket 和客户端进行互通了,当通信完毕之后,就可以退出进程,那父进程如何知道子进程干完了项目,要退出呢?还记得 fork 返回的时候,如果是整数就是父进程吗?这个整数就是子进程的 ID,父进程可以通过这个 ID 查看子进程是否完成项目,是否需要退出。
多线程方式
在 Linux 下,通过 pthread_create 创建一个线程,也是调用 do_fork。不同的是,虽然新的线程在 task 列表会新创建一项,但是很多资源,例如文件描述符列表、进程空间,还是共享的,只不过多了一个引用而已。
新的线程也可以通过已连接 Socket 处理请求,从而达到并发处理的目的。
上面基于进程或者线程模型的,其实还是有问题的。新到来一个 TCP 连接,就需要分配一个进程或者线程。一台机器无法创建很多进程或者线程。有个C10K,它的意思是一台机器要维护 1 万个连接,就要创建 1 万个进程或者线程,那么操作系统是无法承受的。如果维持 1 亿用户在线需要 10 万台服务器,成本也太高了。
IO 多路复用,一个线程维护多个 Socket
由于 Socket 是文件描述符,因而某个线程盯的所有的 Socket,都放在一个文件描述符集合 fd_set 中,这就是项目进度墙,然后调用 select 函数来监听文件描述符集合是否有变化。一旦有变化,就会依次查看每个文件描述符。那些发生变化的文件描述符在 fd_set 对应的位都设为 1,表示 Socket 可读或者可写,从而可以进行读写操作,然后再调用select,接着盯着下一轮的变化。
IO 多路复用,从“派人盯着”到“有事通知”)
上面 select 函数还是有问题的,因为每次 Socket 所在的文件描述符集合中有 Socket 发生变化的时候,都需要通过轮询的方式,也就是需要将全部项目都过一遍的方式来查看进度,这大大影响了一个项目组能够支撑的最大的项目数量。因而使用 select,能够同时盯的项目数量由 FD_SETSIZE 限制。
如果改成事件通知的方式,情况就会好很多,项目组不需要通过轮询挨个盯着这些项目,而是当项目进度发生变化的时候,主动通知项目组,然后项目组再根据项目进展情况做相应的操作。
能完成这件事情的函数叫 epoll,它在内核中的实现不是通过轮询的方式,而是通过注册callback 函数的方式,当某个文件描述符发送变化的时候,就会主动通知。
如图所示,假设进程打开了 Socket m, n, x 等多个文件描述符,现在需要通过 epoll 来监听是否这些 Socket 都有事件发生。其中 epoll_create 创建一个 epoll 对象,也是一个文件,也对应一个文件描述符,同样也对应着打开文件列表中的一项。在这项里面有一个红黑树,在红黑树里,要保存这个 epoll 要监听的所有 Socket。
当 epoll_ctl 添加一个 Socket 的时候,其实是加入这个红黑树,同时红黑树里面的节点指向一个结构,将这个结构挂在被监听的 Socket 的事件列表中。当一个 Socket 来了一个事件的时候,可以从这个列表中得到 epoll 对象,并调用 call back 通知它。
这种通知方式使得监听的 Socket 数据增加的时候,效率不会大幅度降低,能够同时监听的Socket 的数目也非常的多了。上限就为系统定义的、进程打开的最大文件描述符个数。因而,epoll 被称为解决 C10K 问题的利器。