和Java异步打交道就不能回避掉Runnable
,Callable
,Future
,FutureTask
等类,首先来介绍下这几个类的区别。
Runnable接口是我们最熟悉的,它只有一个run函数。然后使用某个线程去执行该runnable即可实现多线程,Thread类在调用start()函数后就是执行的是Runnable的run()函数。Runnable最大的缺点在于run函数没有返回值。
Callable接口和Runnable接口类似,它有一个call函数。使用某个线程执行Callable接口实质就是执行其call函数。call方法和run方法最大的区别就是call方法有返回值:
public interface Callable<V> {
/**
* Computes a result, or throws an exception if unable to do so.
*
* @return computed result
* @throws Exception if unable to compute a result
*/
V call() throws Exception;
}
Future就是对于具体的Runnable或者Callable任务的执行结果进行取消、查询是否完成、获取结果、设置结果操作。get
方法会阻塞,直到任务返回结果(Future简介)。
Future只是一个接口,在实际使用过程中,诸如ThreadPoolExecutor返回的都是一个FutureTask实例。
public class FutureTask<V> implements RunnableFuture<V>
public interface RunnableFuture<V> extends Runnable, Future<V> {
/**
* Sets this Future to the result of its computation
* unless it has been cancelled.
*/
void run();
}
可以看到,FutureTask是一个RunnableFuture,而RunnableFuture实现了Runnbale又实现了Futrue这两个接口。
事实上,通过ExecutorService接口的相关submit方法,实际上都是提交的Callable或者Runnable,包装成一个FutureTask对象。
public abstract class AbstractExecutorService implements ExecutorService {
...
//将Runable包装成FutureTask之后,再调用execute方法
public Future> submit(Runnable task) {
if (task == null) throw new NullPointerException();
RunnableFuture ftask = newTaskFor(task, null);
execute(ftask);
return ftask;
}
//调用newTaskFor方法,利用Callable构造一个FutureTask对象
protected RunnableFuture newTaskFor(Callable callable) {
return new FutureTask(callable);
}
}
可以看到AbstractExecutorService
的submit方法调用后返回的就是一个FutureTask对象,接下来看下FutureTask的构造方法:
//接受Callable对象作为参数
public FutureTask(Callable callable) {
if (callable == null)
throw new NullPointerException();
this.callable = callable;
this.state = NEW;
}
//接受Runnable对象作为参数
public FutureTask(Runnable runnable, V result) {
this.callable = Executors.callable(runnable, result);//将Runnable转为Callable对象
this.state = NEW;
}
//callable方法,将Runnable转为一个Callable对象,包装设计模式
public static Callable callable(Runnable task, T result) {
if (task == null)
throw new NullPointerException();
return new RunnableAdapter(task, result);
}
//RunnableAdapter是Executors的一个内部类,实现了Callable接口
static final class RunnableAdapter implements Callable {
final Runnable task;
final T result;
RunnableAdapter(Runnable task, T result) {
this.task = task;
this.result = result;
}
public T call() {
task.run();
return result;
}
}
可以看到,构造FutureTask时,无论传入的是Runnable还是Callable,最终都实现了Callable接口。
接下来看下FutureTask类的主要成员变量:
public class FutureTask<V> implements RunnableFuture<V> {
/*
* FutureTask中定义了一个state变量,用于记录任务执行的相关状态 ,状态的变化过程如下
* NEW -> COMPLETING -> NORMAL
* NEW -> COMPLETING -> EXCEPTIONAL
* NEW -> CANCELLED
* NEW -> INTERRUPTING -> INTERRUPTED
*/
private volatile int state;
//主流程状态
private static final int NEW = 0; //当FutureTask实例刚刚创建到callbale的call方法执行完成前,处于此状态
private static final int COMPLETING = 1; //callable的call方法执行完成或出现异常时,首先进行此状态
private static final int NORMAL = 2;//callable的call方法正常结束时,进入此状态,将outcom设置为正常结果
private static final int EXCEPTIONAL = 3;//callable的call方法异常结束时,进入此状态,将outcome设置为抛出的异常
//取消任务执行时可能处于的状态
private static final int CANCELLED= 4;// FutureTask任务尚未执行,即还在任务队列的时候,调用了cancel方法,进入此状态
private static final int INTERRUPTING = 5;// FutureTask的run方法已经在执行,收到中断信号,进入此状态
private static final int INTERRUPTED = 6;// 任务成功中断后,进入此状态
private Callable callable;//需要执行的任务,提示:如果提交的是Runnable对象,会先转换为Callable对象,这是构造方法参数
private Object outcome; //任务运行的结果
private volatile Thread runner;//执行此任务的线程
//等待该FutureTask的线程链表,对于同一个FutureTask,如果多个线程调用了get方法,对应的线程都会加入到waiters链表中,同时当FutureTask执行完成后,也会告知所有waiters中的线程
private volatile WaitNode waiters;
......
}
FutureTask的成员变量并不复杂,主要记录以下几部分信息:
接下来开始看一个FutureTask的执行过程,FutureTask执行任务的方法当然还是run方法:
public void run() {
//保证callable任务只被运行一次
if (state != NEW ||
!UNSAFE.compareAndSwapObject(this, runnerOffset,
null, Thread.currentThread()))
return;
try {
Callable c = callable;
if (c != null && state == NEW) {
V result;
boolean ran;
try {
//执行任务
result = c.call();
ran = true;
} catch (Throwable ex) {
result = null;
ran = false;
setException(ex);
}
if (ran)
set(result);
}
} finally {
runner = null;
int s = state;
//判断该任务是否正在响应中断,如果中断没有完成,则等待中断操作完成
if (s >= INTERRUPTING)
handlePossibleCancellationInterrupt(s);
}
}
protected void set(V v) {
if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
outcome = v;
UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
finishCompletion();
}
}
protected void setException(Throwable t) {
if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
outcome = t;
UNSAFE.putOrderedInt(this, stateOffset, EXCEPTIONAL); // final state
finishCompletion();
}
}
两个方法的逻辑基本一致,先通过CAS操作将状态从NEW置为COMPLETING,然后再将最终状态分别置为NORMAL或者EXCEPTIONAL,最后再调用finishCompletion方法。
private void finishCompletion() {
for (WaitNode q; (q = waiters) != null;) {
//通过CAS把栈顶的元素置为null,相当于弹出栈顶元素
if (UNSAFE.compareAndSwapObject(this, waitersOffset, q, null)) {
for (;;) {
Thread t = q.thread;
if (t != null) {
q.thread = null;
LockSupport.unpark(t);
}
WaitNode next = q.next;
if (next == null)
break;
q.next = null; // unlink to help gc
q = next;
}
break;
}
}
done();
callable = null; // to reduce footprint
}
finishCompletion的逻辑也比较简单:
在finishCompletion方法中,FutureTask会通知waiters链表中的每一个等待线程,那么这些线程是怎么被加入到waiters链表中的呢?上文已经讲过,当在一个线程中调用了get方法,该线程就会被加入到waiters链表中。所以接下来看下get方法:
public V get(long timeout, TimeUnit unit)
throws InterruptedException, ExecutionException, TimeoutException {
if (unit == null)
throw new NullPointerException();
int s = state;
if (s <= COMPLETING &&
(s = awaitDone(true, unit.toNanos(timeout))) <= COMPLETING)
throw new TimeoutException();
return report(s);
}
get方法很简答,主要就是调用awaitDone
方法:
private int awaitDone(boolean timed, long nanos)
throws InterruptedException {
final long deadline = timed ? System.nanoTime() + nanos : 0L;
WaitNode q = null;
boolean queued = false;
for (;;) {
//如果该线程执行interrupt()方法,则从队列中移除该节点,并抛出异常
if (Thread.interrupted()) {
removeWaiter(q);
throw new InterruptedException();
}
int s = state;
//如果state状态大于COMPLETING 则说明任务执行完成,或取消
if (s > COMPLETING) {
if (q != null)
q.thread = null;
return s;
}
//如果state=COMPLETING,则使用yield,因为此状态的时间特别短,通过yield比挂起响应更快。
else if (s == COMPLETING) // cannot time out yet
Thread.yield();
//构建节点
else if (q == null)
q = new WaitNode();
//把当前节点入栈
else if (!queued)
queued = UNSAFE.compareAndSwapObject(this, waitersOffset, q.next = waiters, q);
//如果需要阻塞指定时间,则使用LockSupport.parkNanos阻塞指定时间
//如果到指定时间还没执行完,则从队列中移除该节点,并返回当前状态
else if (timed) {
nanos = deadline - System.nanoTime();
if (nanos <= 0L) {
removeWaiter(q);
return state;
}
LockSupport.parkNanos(this, nanos);
}
//阻塞当前线程
else
LockSupport.park(this);
}
}
整个方法的大致逻辑主要分为以下几步:
LockSupport.parkNanos
LockSupport.park
)来阻塞当前线程,直到超时或者线程被finishCompletion方法唤醒get方法是FutureTask中的关键方法,了解了get方法逻辑也就了解为什么当调用get方法时线程会被阻塞直到任务运行完成。
cancel方法用于结束当前任务:
public boolean cancel(boolean mayInterruptIfRunning) {
if (!(state == NEW &&
UNSAFE.compareAndSwapInt(this, stateOffset, NEW,
mayInterruptIfRunning ? INTERRUPTING : CANCELLED)))
return false;
try { // in case call to interrupt throws exception
if (mayInterruptIfRunning) {
try {
Thread t = runner;
if (t != null)
t.interrupt();
} finally { // final state
UNSAFE.putOrderedInt(this, stateOffset, INTERRUPTED);
}
}
} finally {
finishCompletion();
}
return true;
}