//创建Client
OkHttpClient client = new OkHttpClient();
Request.Builder requestBuilder = new Request.Builder().url("http://www.baidu.com").method("GET",null);
Request request = requestBuilder.build();
//创建Call
Call call = client.newCall(request);
//异步请求
call.enqueue(new Callback() {
@Override
public void onFailure(Call call, IOException e) {
//do samething
}
@Override
public void onResponse(Call call, Response response) throws IOException {
//do samething
}
});
//同步请求
try {
Response r= call.execute();
if(r.isSuccessful()){
//do samething
}
} catch (IOException e) {
e.printStackTrace();
}
这里通过Builder模式创建Client
public Builder newBuilder() {
return new Builder(this);
}
Builder(OkHttpClient okHttpClient) {
this.dispatcher = okHttpClient.dispatcher;
this.proxy = okHttpClient.proxy;
this.protocols = okHttpClient.protocols;
this.connectionSpecs = okHttpClient.connectionSpecs;
this.interceptors.addAll(okHttpClient.interceptors);
this.networkInterceptors.addAll(okHttpClient.networkInterceptors);
this.proxySelector = okHttpClient.proxySelector;
this.cookieJar = okHttpClient.cookieJar;
this.internalCache = okHttpClient.internalCache;
this.cache = okHttpClient.cache;
this.socketFactory = okHttpClient.socketFactory;
this.sslSocketFactory = okHttpClient.sslSocketFactory;
this.certificateChainCleaner = okHttpClient.certificateChainCleaner;
this.hostnameVerifier = okHttpClient.hostnameVerifier;
this.certificatePinner = okHttpClient.certificatePinner;
this.proxyAuthenticator = okHttpClient.proxyAuthenticator;
this.authenticator = okHttpClient.authenticator;
this.connectionPool = okHttpClient.connectionPool;
this.dns = okHttpClient.dns;
this.followSslRedirects = okHttpClient.followSslRedirects;
this.followRedirects = okHttpClient.followRedirects;
this.retryOnConnectionFailure = okHttpClient.retryOnConnectionFailure;
this.connectTimeout = okHttpClient.connectTimeout;
this.readTimeout = okHttpClient.readTimeout;
this.writeTimeout = okHttpClient.writeTimeout;
this.pingInterval = okHttpClient.pingInterval;
}
从使用可以看出:Call的创建是通过OkHttpClient中的newCall方法。
@Override public Call newCall(Request request) {
return new RealCall(this, request, false /* for web socket */);
}
Call是一个接口,这里的实现类是RealCall:
RealCall(OkHttpClient client, Request originalRequest, boolean forWebSocket) {
this.client = client;
this.originalRequest = originalRequest;
this.forWebSocket = forWebSocket;
this.retryAndFollowUpInterceptor = new RetryAndFollowUpInterceptor(client, forWebSocket);
}
@Override
public Response execute() throws IOException {
synchronized (this) {
if (executed) throw new IllegalStateException("Already Executed");
executed = true;
}
captureCallStackTrace();
try {
client.dispatcher().executed(this);
Response result = getResponseWithInterceptorChain();
if (result == null) throw new IOException("Canceled");
return result;
} finally {
client.dispatcher().finished(this);
}
}
同步请求,很直接就调用到了最核心的函数getResponseWithInterceptorChain()。再看下异步请求。
@Override public void enqueue(Callback responseCallback) {
synchronized (this) {
if (executed) throw new IllegalStateException("Already Executed");
executed = true;
}
captureCallStackTrace();
client.dispatcher().enqueue(new AsyncCall(responseCallback));
}
异步请求,将用户传入responseCallback对象封装成一个AsyncCall对象提交给Dispather来处理,这里的AsyncCall是RealCall的一个内部类。再看下这个Dispather怎么处理这个AsyncCall的。
synchronized void enqueue(AsyncCall call) {
if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {
runningAsyncCalls.add(call);
executorService().execute(call);
} else {
readyAsyncCalls.add(call);
}
}
Dispather中管理了一些请求队列,如果运行中异步请求队列未满则加入该队列,并提交到线程池。否则,加入等待队列。
这里的AsyncCall其实就是Runnable的子类,所以直接能把AsyncCall的对象给了线程池。
//RealCall中内部类
final class AsyncCall extends NamedRunnable {
private final Callback responseCallback;
AsyncCall(Callback responseCallback) {
super("OkHttp %s", redactedUrl());
this.responseCallback = responseCallback;
}
String host() {
return originalRequest.url().host();
}
Request request() {
return originalRequest;
}
RealCall get() {
return RealCall.this;
}
@Override protected void execute() {
boolean signalledCallback = false;
try {
Response response = getResponseWithInterceptorChain();
if (retryAndFollowUpInterceptor.isCanceled()) {
signalledCallback = true;
responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
} else {
signalledCallback = true;
responseCallback.onResponse(RealCall.this, response);
}
} catch (IOException e) {
if (signalledCallback) {
// Do not signal the callback twice!
Platform.get().log(INFO, "Callback failure for " + toLoggableString(), e);
} else {
responseCallback.onFailure(RealCall.this, e);
}
} finally {
client.dispatcher().finished(this);
}
}
}
//NamedRunnable.java
public abstract class NamedRunnable implements Runnable {
protected final String name;
public NamedRunnable(String format, Object... args) {
this.name = Util.format(format, args);
}
@Override public final void run() {
String oldName = Thread.currentThread().getName();
Thread.currentThread().setName(name);
try {
execute();
} finally {
Thread.currentThread().setName(oldName);
}
}
protected abstract void execute();
}
AsyncCall父类的run()方法会调用抽象方法execute(),也就是将在Dispather里的线程池执行AsyncCall对象的时候,就会执行到execute(),在这个方法里同样调用了核心的网络请求方法getResponseWithInterceptorChain()。
而且在execute()里会回调用户接口responseCallback的回调方法。注意:这里的回调是在非主线程直接回调的,也就是在Android里使用的话要注意这里面不能直接更新UI操作。
所以,同步请求和异步请求最终都是调用的getResponseWithInterceptorChain();来发送网络请求,只是异步请求涉及到一些线程池操作,包括请求的队列管理、调度。
//RealCall.java
Response getResponseWithInterceptorChain() throws IOException {
// Build a full stack of interceptors.
List interceptors = new ArrayList<>();
interceptors.addAll(client.interceptors());
interceptors.add(retryAndFollowUpInterceptor);
interceptors.add(new BridgeInterceptor(client.cookieJar()));
interceptors.add(new CacheInterceptor(client.internalCache()));
interceptors.add(new ConnectInterceptor(client));
if (!forWebSocket) {
interceptors.addAll(client.networkInterceptors());
}
interceptors.add(new CallServerInterceptor(forWebSocket));
Interceptor.Chain chain = new RealInterceptorChain(
interceptors, null, null, null, 0, originalRequest);
return chain.proceed(originalRequest);
}
这个方法中是添加了一些拦截器,然后启动一个拦截器调用链,拦截器递归调用之后最后返回请求的响应Response。这里的拦截器分层的思想就是借鉴的网络里的分层模型的思想。请求从最上面一层到最下一层,响应从最下一层到最上一层,每一层只负责自己的任务,对请求或响应做自己负责的那块的修改。
//RealInterceptorChain.java
public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec,
Connection connection) throws IOException {
if (index >= interceptors.size()) throw new AssertionError();
calls++;
// If we already have a stream, confirm that the incoming request will use it.
if (this.httpCodec != null && !sameConnection(request.url())) {
throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
+ " must retain the same host and port");
}
// If we already have a stream, confirm that this is the only call to chain.proceed().
if (this.httpCodec != null && calls > 1) {
throw new IllegalStateException("network interceptor " + interceptors.get(index - 1)
+ " must call proceed() exactly once");
}
// Call the next interceptor in the chain.
RealInterceptorChain next = new RealInterceptorChain(
interceptors, streamAllocation, httpCodec, connection, index + 1, request);
Interceptor interceptor = interceptors.get(index);
Response response = interceptor.intercept(next);
// Confirm that the next interceptor made its required call to chain.proceed().
if (httpCodec != null && index + 1 < interceptors.size() && next.calls != 1) {
throw new IllegalStateException("network interceptor " + interceptor
+ " must call proceed() exactly once");
}
// Confirm that the intercepted response isn't null.
if (response == null) {
throw new NullPointerException("interceptor " + interceptor + " returned null");
}
return response;
}
RealInterceptorChain的proceed(),每次重新创建一个RealInterceptorChain对象,然后调用下一层的拦截器的interceptor.intercept()方法。
每一个拦截器的intercept()方法都是这样的结构:
@Override
public Response intercept(Chain chain) throws IOException {
Request request = chain.request();
// 1、该拦截器在Request阶段负责的事情
// 2、调用RealInterceptorChain.proceed(),其实是递归调用下一层拦截器的intercept方法
response = ((RealInterceptorChain) chain).proceed(request, streamAllocation, null, null);
//3、该拦截器在Response阶段负责的事情,然后返回到上一层拦截器的 response阶段
return response;
}
}
OkHttp中最底层为CallServerInterceptor,OkHttp还支持自定义拦截器。
@Override public Response intercept(Chain chain) throws IOException {
Request userRequest = chain.request();
Request.Builder requestBuilder = userRequest.newBuilder();
//Request阶段
RequestBody body = userRequest.body();
if (body != null) {
MediaType contentType = body.contentType();
if (contentType != null) {
requestBuilder.header("Content-Type", contentType.toString());
}
long contentLength = body.contentLength();
if (contentLength != -1) {
requestBuilder.header("Content-Length", Long.toString(contentLength));
requestBuilder.removeHeader("Transfer-Encoding");
} else {
requestBuilder.header("Transfer-Encoding", "chunked");
requestBuilder.removeHeader("Content-Length");
}
}
if (userRequest.header("Host") == null) {
requestBuilder.header("Host", hostHeader(userRequest.url(), false));
}
if (userRequest.header("Connection") == null) {
requestBuilder.header("Connection", "Keep-Alive");
}
// If we add an "Accept-Encoding: gzip" header field we're responsible for also decompressing
// the transfer stream.
boolean transparentGzip = false;
if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) {
transparentGzip = true;
requestBuilder.header("Accept-Encoding", "gzip");
}
List<Cookie> cookies = cookieJar.loadForRequest(userRequest.url());
if (!cookies.isEmpty()) {
requestBuilder.header("Cookie", cookieHeader(cookies));
}
if (userRequest.header("User-Agent") == null) {
requestBuilder.header("User-Agent", Version.userAgent());
}
Response networkResponse = chain.proceed(requestBuilder.build());
//Response阶段
HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers());
Response.Builder responseBuilder = networkResponse.newBuilder()
.request(userRequest);
if (transparentGzip
&& "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding"))
&& HttpHeaders.hasBody(networkResponse)) {
GzipSource responseBody = new GzipSource(networkResponse.body().source());
Headers strippedHeaders = networkResponse.headers().newBuilder()
.removeAll("Content-Encoding")
.removeAll("Content-Length")
.build();
responseBuilder.headers(strippedHeaders);
responseBuilder.body(new RealResponseBody(strippedHeaders, Okio.buffer(responseBody)));
}
return responseBuilder.build();
}
BridgeInterceptor拦截器再Request阶段,就是配置相关信息,重新build Request对象,添加请求头。在Response阶段做gzip解压。
@Override public Response intercept(Chain chain) throws IOException {
Response cacheCandidate = cache != null
? cache.get(chain.request())
: null;
long now = System.currentTimeMillis();
CacheStrategy strategy = new CacheStrategy.Factory(now, chain.request(), cacheCandidate).get();
Request networkRequest = strategy.networkRequest;
Response cacheResponse = strategy.cacheResponse;
if (cache != null) {
cache.trackResponse(strategy);
}
if (cacheCandidate != null && cacheResponse == null) {
closeQuietly(cacheCandidate.body()); // The cache candidate wasn't applicable. Close it.
}
// If we're forbidden from using the network and the cache is insufficient, fail.
if (networkRequest == null && cacheResponse == null) {
return new Response.Builder()
.request(chain.request())
.protocol(Protocol.HTTP_1_1)
.code(504)
.message("Unsatisfiable Request (only-if-cached)")
.body(Util.EMPTY_RESPONSE)
.sentRequestAtMillis(-1L)
.receivedResponseAtMillis(System.currentTimeMillis())
.build();
}
// If we don't need the network, we're done.
if (networkRequest == null) {
return cacheResponse.newBuilder()
.cacheResponse(stripBody(cacheResponse))
.build();
}
Response networkResponse = null;
try {
networkResponse = chain.proceed(networkRequest);
} finally {
// If we're crashing on I/O or otherwise, don't leak the cache body.
if (networkResponse == null && cacheCandidate != null) {
closeQuietly(cacheCandidate.body());
}
}
// If we have a cache response too, then we're doing a conditional get.
if (cacheResponse != null) {
if (networkResponse.code() == HTTP_NOT_MODIFIED) {
Response response = cacheResponse.newBuilder()
.headers(combine(cacheResponse.headers(), networkResponse.headers()))
.sentRequestAtMillis(networkResponse.sentRequestAtMillis())
.receivedResponseAtMillis(networkResponse.receivedResponseAtMillis())
.cacheResponse(stripBody(cacheResponse))
.networkResponse(stripBody(networkResponse))
.build();
networkResponse.body().close();
// Update the cache after combining headers but before stripping the
// Content-Encoding header (as performed by initContentStream()).
cache.trackConditionalCacheHit();
cache.update(cacheResponse, response);
return response;
} else {
closeQuietly(cacheResponse.body());
}
}
Response response = networkResponse.newBuilder()
.cacheResponse(stripBody(cacheResponse))
.networkResponse(stripBody(networkResponse))
.build();
if (HttpHeaders.hasBody(response)) {
CacheRequest cacheRequest = maybeCache(response, networkResponse.request(), cache);
response = cacheWritingResponse(cacheRequest, response);
}
return response;
}
CacheInterceptor拦截器在Request中检查是否该请求有缓存,是否要重新请求,如果不需要,则使用缓存,不调用下一层。Response阶段则对下一层的Response做缓存。
ConnectInterceptor
@Override public Response intercept(Chain chain) throws IOException {
RealInterceptorChain realChain = (RealInterceptorChain) chain;
Request request = realChain.request();
StreamAllocation streamAllocation = realChain.streamAllocation();
// We need the network to satisfy this request. Possibly for validating a conditional GET.
boolean doExtensiveHealthChecks = !request.method().equals("GET");
HttpCodec httpCodec = streamAllocation.newStream(client, doExtensiveHealthChecks);
RealConnection connection = streamAllocation.connection();
return realChain.proceed(request, streamAllocation, httpCodec, connection);
}
ConnectInterceptor拦截器只在Request阶段建立连接,Response阶段直接把下一层的Response返回给上一层。再看下建立连接的过程。
//StreamAllocation.java
public HttpCodec newStream(OkHttpClient client, boolean doExtensiveHealthChecks) {
int connectTimeout = client.connectTimeoutMillis();
int readTimeout = client.readTimeoutMillis();
int writeTimeout = client.writeTimeoutMillis();
boolean connectionRetryEnabled = client.retryOnConnectionFailure();
//查找健康网络连接
try {
RealConnection resultConnection = findHealthyConnection(connectTimeout, readTimeout,
writeTimeout, connectionRetryEnabled, doExtensiveHealthChecks);
HttpCodec resultCodec = resultConnection.newCodec(client, this);
synchronized (connectionPool) {
codec = resultCodec;
return resultCodec;
}
} catch (IOException e) {
throw new RouteException(e);
}
}
private RealConnection findHealthyConnection(int connectTimeout, int readTimeout,
int writeTimeout, boolean connectionRetryEnabled, boolean doExtensiveHealthChecks)
throws IOException {
while (true) {
RealConnection candidate = findConnection(connectTimeout, readTimeout, writeTimeout,
connectionRetryEnabled);
// If this is a brand new connection, we can skip the extensive health checks.
synchronized (connectionPool) {
if (candidate.successCount == 0) {
return candidate;
}
}
// Do a (potentially slow) check to confirm that the pooled connection is still good. If it
// isn't, take it out of the pool and start again.
if (!candidate.isHealthy(doExtensiveHealthChecks)) {
noNewStreams();
continue;
}
return candidate;
}
}
private RealConnection findConnection(int connectTimeout, int readTimeout, int writeTimeout,
boolean connectionRetryEnabled) throws IOException {
Route selectedRoute;
synchronized (connectionPool) {
if (released) throw new IllegalStateException("released");
if (codec != null) throw new IllegalStateException("codec != null");
if (canceled) throw new IOException("Canceled");
// Attempt to use an already-allocated connection.
RealConnection allocatedConnection = this.connection;
if (allocatedConnection != null && !allocatedConnection.noNewStreams) {
return allocatedConnection;
}
// Attempt to get a connection from the pool.
Internal.instance.get(connectionPool, address, this);
if (connection != null) {
return connection;
}
selectedRoute = route;
}
// If we need a route, make one. This is a blocking operation.
if (selectedRoute == null) {
selectedRoute = routeSelector.next();
}
// Create a connection and assign it to this allocation immediately. This makes it possible for
// an asynchronous cancel() to interrupt the handshake we're about to do.
RealConnection result;
synchronized (connectionPool) {
route = selectedRoute;
refusedStreamCount = 0;
result = new RealConnection(connectionPool, selectedRoute);
acquire(result);
if (canceled) throw new IOException("Canceled");
}
// Do TCP + TLS handshakes. This is a blocking operation.
result.connect(connectTimeout, readTimeout, writeTimeout, connectionRetryEnabled);
routeDatabase().connected(result.route());
Socket socket = null;
synchronized (connectionPool) {
// Pool the connection.
Internal.instance.put(connectionPool, result);
// If another multiplexed connection to the same address was created concurrently, then
// release this connection and acquire that one.
if (result.isMultiplexed()) {
socket = Internal.instance.deduplicate(connectionPool, address, this);
result = connection;
}
}
closeQuietly(socket);
return result;
}
//ConnectionPool.java
public ConnectionPool() {
this(5, 5, TimeUnit.MINUTES);
}
这里基本就是从连接池里去找已有的网络连接,如果有,则复用,减少三次握手;没有的话,则创建一个RealConnection对象,三次握手,建立连接,然后将连接放到连接池。具体的内部connect过程,就不深入了。ConnecctonPool中最多支持保持5个地址的连接keep-alive,每个keep-alive 5分钟,并有异步线程循环清理无效的连接。