Spark Streaming 'numRecords must not be negative'问题解决

问题描述

笔者使用spark streaming读取Kakfa中的数据,做进一步处理,用到了KafkaUtil的createDirectStream()方法;该方法不会自动保存topic partition的offset到zk,需要在代码中编写提交逻辑,此处介绍了保存offset的方法。
删除已经使用过的kafka topic,然后新建同名topic,使用该方式时出现了"numRecords must not be negative"异常
详细信息如下图:
Spark Streaming 'numRecords must not be negative'问题解决_第1张图片
是不合法的参数异常,RDD的记录数目必须不能是负数
下文详细分析该问题的出现的场景,以及解决方法。

异常分析

numRecords确定

首先,定位出异常出现的问题,和大致原因。异常中打印出了出现的位置 org.apache.spark.streaming.scheduler.StreamInputInfo.InputInfoTracker的第38行,此处代码:

Spark Streaming 'numRecords must not be negative'问题解决_第2张图片

代码38行,判断了numRecords是否大于等于0,当不满足条件时抛出异常,可判断此时numRecords<0。
numRecords的解释:
numRecords: the number of records in a batch
应该是当前rdd中records 数目计算出了问题。
numRecords 构造StreamInputInfo时的参数,结合异常中的信息,找到了DirectKafkaInputDStream中的构造InputInfo的位置:
Spark Streaming 'numRecords must not be negative'问题解决_第3张图片

可知 numRecords是rdd.count()的值。

rdd.count的计算

根据以上分析可知rdd.count()值为负值,因此需要分析rdd的是如何生成的。
同样在DirectKafkaInputDStream中找到rdd的生成代码:

Spark Streaming 'numRecords must not be negative'问题解决_第4张图片

从此处一路跟踪代码,可在KafkaRDD.scala中找到rdd.count的赋值逻辑:

KafkaRDD.count

offsetRanges的计算逻辑

offsetRanges的定义

offsetRanges: offset ranges that define the Kafka data belonging to this RDD

在KafkaRDDPartition 40行找到kafka partition offsetRange的计算逻辑:

def count(): Long = untilOffset - fromOffset
fromOffset: per-topic/partition Kafka offset defining the (inclusive) starting point of the batch
untilOffset: per-topic/partition Kafka offset defining the (inclusive) ending point of the batch

fromOffset来自zk中保存;
untilOffset通过DirectKafkaInputDStream第145行:

val untilOffsets = clamp(latestLeaderOffsets(maxRetries))

计算得到,计算过程得到最新的offset,然后使用spark.streaming.kafka.maxRatePerPartition做clamp,得到允许的最大untilOffsets,##而此时新建的topic,如果topic中没有数据,untilOffsets应该为0##

原因总结

当删除一个topic时,zk中的offset信息并没有被清除,因此KafkaDirectStreaming再次启动时仍会得到旧的topic offset为old_offset,作为fromOffset。
当新建了topic后,使用untiloffset计算逻辑,得到untilOffset为0(如果topic已有数据则>0);
再次被启动的KafkaDirectStreaming Job通过异常的计算逻辑得到的rdd numRecords值为可计算为:
numRecords = untilOffset - fromOffset(old_offset)
当untilOffset < old_offset时,此异常会出现,对于新建的topic这种情况的可能性很大

解决方法

思路

根据以上分析,可在确定KafkaDirectStreaming 的fromOffsets时判断fromOffset与untiloffset的大小关系,当untilOffset < fromOffset时,矫正fromOffset为offset初始值0。

流程

  • 从zk获取topic/partition 的fromOffset(获取方法链接)
  • 利用SimpleConsumer获取每个partiton的lastOffset(untilOffset )
  • 判断每个partition lastOffset与fromOffset的关系
  • 当lastOffset < fromOffset时,将fromOffset赋值为0
    通过以上步骤完成fromOffset的值矫正。

核心代码

获取kafka topic partition lastoffset代码:

package org.frey.example.utils.kafka;

import com.google.common.collect.Lists;
import com.google.common.collect.Maps;
import kafka.api.PartitionOffsetRequestInfo;
import kafka.cluster.Broker;
import kafka.common.TopicAndPartition;
import kafka.javaapi.*;
import kafka.javaapi.consumer.SimpleConsumer;

import java.util.Date;
import java.util.HashMap;
import java.util.List;
import java.util.Map;

/**
 * KafkaOffsetTool
 *
 * @author v1-daddy
 * @date 2016/4/11
 */
public class KafkaOffsetTool {

  private static KafkaOffsetTool instance;
  final int TIMEOUT = 100000;
  final int BUFFERSIZE = 64 * 1024;

  private KafkaOffsetTool() {
  }

  public static synchronized KafkaOffsetTool getInstance() {
    if (instance == null) {
      instance = new KafkaOffsetTool();
    }
    return instance;
  }

  public Map getLastOffset(String brokerList, List topics,
      String groupId) {

    Map topicAndPartitionLongMap = Maps.newHashMap();

    Map topicAndPartitionBrokerMap =
        KafkaOffsetTool.getInstance().findLeader(brokerList, topics);

    for (Map.Entry topicAndPartitionBrokerEntry : topicAndPartitionBrokerMap
        .entrySet()) {
      // get leader broker
      Broker leaderBroker = topicAndPartitionBrokerEntry.getValue();

      SimpleConsumer simpleConsumer = new SimpleConsumer(leaderBroker.host(), leaderBroker.port(),
          TIMEOUT, BUFFERSIZE, groupId);

      long readOffset = getTopicAndPartitionLastOffset(simpleConsumer,
          topicAndPartitionBrokerEntry.getKey(), groupId);

      topicAndPartitionLongMap.put(topicAndPartitionBrokerEntry.getKey(), readOffset);

    }

    return topicAndPartitionLongMap;

  }

  /**
   * 得到所有的 TopicAndPartition
   *
   * @param brokerList
   * @param topics
   * @return topicAndPartitions
   */
  private Map findLeader(String brokerList, List topics) {
    // get broker's url array
    String[] brokerUrlArray = getBorkerUrlFromBrokerList(brokerList);
    // get broker's port map
    Map brokerPortMap = getPortFromBrokerList(brokerList);

    // create array list of TopicAndPartition
    Map topicAndPartitionBrokerMap = Maps.newHashMap();

    for (String broker : brokerUrlArray) {

      SimpleConsumer consumer = null;
      try {
        // new instance of simple Consumer
        consumer = new SimpleConsumer(broker, brokerPortMap.get(broker), TIMEOUT, BUFFERSIZE,
            "leaderLookup" + new Date().getTime());

        TopicMetadataRequest req = new TopicMetadataRequest(topics);

        TopicMetadataResponse resp = consumer.send(req);

        List metaData = resp.topicsMetadata();

        for (TopicMetadata item : metaData) {
          for (PartitionMetadata part : item.partitionsMetadata()) {
            TopicAndPartition topicAndPartition =
                new TopicAndPartition(item.topic(), part.partitionId());
            topicAndPartitionBrokerMap.put(topicAndPartition, part.leader());
          }
        }
      } catch (Exception e) {
        e.printStackTrace();
      } finally {
        if (consumer != null)
          consumer.close();
      }
    }
    return topicAndPartitionBrokerMap;
  }

  /**
   * get last offset
   * @param consumer
   * @param topicAndPartition
   * @param clientName
   * @return
   */
  private long getTopicAndPartitionLastOffset(SimpleConsumer consumer,
      TopicAndPartition topicAndPartition, String clientName) {
    Map requestInfo =
        new HashMap();

    requestInfo.put(topicAndPartition, new PartitionOffsetRequestInfo(
        kafka.api.OffsetRequest.LatestTime(), 1));

    OffsetRequest request = new OffsetRequest(
        requestInfo, kafka.api.OffsetRequest.CurrentVersion(),
        clientName);

    OffsetResponse response = consumer.getOffsetsBefore(request);

    if (response.hasError()) {
      System.out
          .println("Error fetching data Offset Data the Broker. Reason: "
              + response.errorCode(topicAndPartition.topic(), topicAndPartition.partition()));
      return 0;
    }
    long[] offsets = response.offsets(topicAndPartition.topic(), topicAndPartition.partition());
    return offsets[0];
  }
  /**
   * 得到所有的broker url
   *
   * @param brokerlist
   * @return
   */
  private String[] getBorkerUrlFromBrokerList(String brokerlist) {
    String[] brokers = brokerlist.split(",");
    for (int i = 0; i < brokers.length; i++) {
      brokers[i] = brokers[i].split(":")[0];
    }
    return brokers;
  }

  /**
   * 得到broker url 与 其port 的映射关系
   *
   * @param brokerlist
   * @return
   */
  private Map getPortFromBrokerList(String brokerlist) {
    Map map = new HashMap();
    String[] brokers = brokerlist.split(",");
    for (String item : brokers) {
      String[] itemArr = item.split(":");
      if (itemArr.length > 1) {
        map.put(itemArr[0], Integer.parseInt(itemArr[1]));
      }
    }
    return map;
  }

  public static void main(String[] args) {
    List topics = Lists.newArrayList();
    topics.add("ys");
    topics.add("bugfix");
    Map topicAndPartitionLongMap =
        KafkaOffsetTool.getInstance().getLastOffset("broker001:9092,broker002:9092", topics, "my.group.id");

    for (Map.Entry entry : topicAndPartitionLongMap.entrySet()) {
     System.out.println(entry.getKey().topic() + "-"+ entry.getKey().partition() + ":" + entry.getValue());
    }
  }
}

矫正offset核心代码:

    /** 以下 矫正 offset */
    // 得到Topic/partition 的lastOffsets
    Map topicAndPartitionLongMap =
        KafkaOffsetTool.getInstance().getLastOffset(kafkaParams.get("metadata.broker.list"),
            topicList, "my.group.id");

    // 遍历每个Topic.partition
    for (Map.Entry topicAndPartitionLongEntry : fromOffsets.entrySet()) {
      // fromOffset > lastOffset时
      if (topicAndPartitionLongEntry.getValue() >
          topicAndPartitionLongMap.get(topicAndPartitionLongEntry.getKey())) {
         //矫正fromoffset为offset初始值0
        topicAndPartitionLongEntry.setValue(0L);
      }
    }
    /** 以上 矫正 offset */

你可能感兴趣的:(Spark)