大数据应用之HBase数据插入性能优化实测教程

引言:

大家在使用HBase的过程中,总是面临性能优化的问题,本文从HBase客户端参数设置的角度,研究HBase客户端数据批量插入性能优化的问题。事实胜于雄辩,数据比理论更有说服力,基于此,作者设计了这么一个HBase数据插入性能优化实测实验,希望大家用自己的服务器跑出的结果,给自己一个值得信服的结论。

一、客户单优化参数

  1.Put List Size
  HBase的Put支持单条插入,也支持批量插入。

  2. AutoFlush  
  AutoFlush指的是在每次调用HBase的Put操作,是否提交到HBase Server。 默认是true,每次会提交。如果此时是单条插入,就会有更多的IO,从而降低性能

  3.Write Buffer Size
  Write Buffer Size在AutoFlush为false的时候起作用,默认是2MB,也就是当插入数据超过2MB,就会自动提交到Server

  4.WAL
  WAL是Write Ahead Log的缩写,指的是HBase在插入操作前是否写Log。默认是打开,关掉会提高性能,但是如果系统出现故障(负责插入的Region Server  挂掉),数据可能会丢失。

参数

默认值

说明

JVM Heap Size

 

平台不同值不同自行设置

AutoFlush

True

默认逐条提交

Put List Size

1

支持逐条和批量

Write Buffer Size

2M

与autoflush配合使用

Write Ahead Log

True

默认开启,需要手动关闭

 

 

 

 

二、源码程序

 import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.Random;
 
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.hadoop.hbase.HTableDescriptor;
import org.apache.hadoop.hbase.KeyValue;
import org.apache.hadoop.hbase.MasterNotRunningException;
import org.apache.hadoop.hbase.ZooKeeperConnectionException;
import org.apache.hadoop.hbase.client.Delete;
import org.apache.hadoop.hbase.client.Get;
import org.apache.hadoop.hbase.client.HBaseAdmin;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.client.Result;
import org.apache.hadoop.hbase.client.ResultScanner;
import org.apache.hadoop.hbase.client.Scan;
import org.apache.hadoop.hbase.client.Put;
import org.apache.hadoop.hbase.util.Bytes;

/*
 * -------优化案例说明------------
 * 1.优化参数1:Autoflush                默认关闭,需要手动开启
 * 2.优化参数2:put list size            支持单条与批量
 * 3.优化参数3:JVM heap size             默认值是平台而不同,需要手动设置
 * 4.优化参数4:Write Buffer Size        默认值2M    
 * 5.优化参数5:Write Ahead Log             默认开启,需要手动关闭
 * */

public class TestInsert {
    static Configuration hbaseConfig = null;

    public static void main(String[] args) throws Exception {
        Configuration HBASE_CONFIG = new Configuration();
        HBASE_CONFIG.set("hbase.master", "192.168.230.133:60000");
        HBASE_CONFIG.set("hbase.zookeeper.quorum", "192.168.230.133");
        HBASE_CONFIG.set("hbase.zookeeper.property.clientPort", "2181");
        hbaseConfig = HBaseConfiguration.create(HBASE_CONFIG);
        //关闭wal,autoflush,writebuffer = 24M
        insert(false,false,1024*1024*24);
        //开启AutoFlush,writebuffer = 0
        insert(false,true,0);
        //默认值,全部开启
        insert(true,true,0);
    }

    private static void insert(boolean wal,boolean autoFlush,long writeBuffer)
            throws IOException {
        String tableName="etltest";
        HBaseAdmin hAdmin = new HBaseAdmin(hbaseConfig);
        if (hAdmin.tableExists(tableName)) {
            hAdmin.disableTable(tableName);
            hAdmin.deleteTable(tableName);
        }

        HTableDescriptor t = new HTableDescriptor(tableName);
        t.addFamily(new HColumnDescriptor("f1"));
        t.addFamily(new HColumnDescriptor("f2"));
        t.addFamily(new HColumnDescriptor("f3"));
        t.addFamily(new HColumnDescriptor("f4"));
        hAdmin.createTable(t);
        System.out.println("table created");
        
        HTable table = new HTable(hbaseConfig, tableName);
        table.setAutoFlush(autoFlush);
        if(writeBuffer!=0){
            table.setWriteBufferSize(writeBuffer);
        }
        List lp = new ArrayList();
        long all = System.currentTimeMillis();
        
        System.out.println("start time = "+all);
        int count = 10000;
        byte[] buffer = new byte[128];
        Random r = new Random();
        for (int i = 1; i <= count; ++i) {
            Put p = new Put(String.format("row d",i).getBytes());
            r.nextBytes(buffer);
            p.add("f1".getBytes(), null, buffer);
            p.add("f2".getBytes(), null, buffer);
            p.add("f3".getBytes(), null, buffer);
            p.add("f4".getBytes(), null, buffer);
            p.setWriteToWAL(wal);
            lp.add(p);
            if(i%1000 == 0){
                table.put(lp);
                lp.clear();
            }
        }
        
        System.out.println("WAL="+wal+",autoFlush="+autoFlush+",buffer="+writeBuffer+",count="+count);
        long end = System.currentTimeMillis();
        System.out.println("total need time = "+ (end - all)*1.0/1000+"s");
        
        
        System.out.println("insert complete"+",costs:"+(System.currentTimeMillis()-all)*1.0/1000+"ms");
    }
}

三、集群配置

3.1 服务器硬件配置清单

序号

节点名称

CUP

内存

硬盘

带宽

1

HMaster

 

 

 

 

2

HregionServer1

 

 

 

 

3

HregionServer2

 

 

 

 

4

 

 

 

 

5

 

 

 

 

 

6

 

 

 

 

 

7

 

 

 

 

 

3.2 客户端硬件配置清单

设备

节点名称

 

Cpu

 

 

内存

 

 

硬盘

 

 

带宽

 

 

四、测试报告

数据量

JVM

AutoFlush

Put List Size

WriteBufferSize

WAL

耗时

1000

512m

false

1000

1024*1024*24

false

 

2000

 

 

 

 

 

 

5000

 

 

 

 

 

 

10000

 

 

 

 

 

 

20000

 

 

 

 

 

 

50000

 

 

 

 

 

 

100000

 

 

 

 

 

 

200000

 

 

 

 

 

 

500000

 

 

 

 

 

 

100000

 

 

 

 

 

 

备注:该技术专题讨论正在群Hadoop高级交流群:293503507同步直播中,敬请关注。

你可能感兴趣的:(大数据,云计算)