算法题①:求1+2+…+n

题扣面试题:面试题64. 求1+2+…+n

​ 题目链接:https://leetcode-cn.com/problems/qiu-12n-lcof/

题目要求:

​ 求 1+2+...+n ,要求不能使用乘除法、for、while、if、else、switch、case等关键字及条件判断语句(A?B:C)。

示例 1:

输入: n = 3
输出: 6

示例 2:

输入: n = 9
输出: 45

限制:

1 <= n <= 10000

解题思路

​ 首先我们梳理一下,这题要求我们不能使用乘除法、for、while、if、else、switch、case 等关键字及条件判断语句,因此我们手里能用的工具很少,列举出来发现只有加减法,赋值,位运算符以及逻辑运算符。

递归函数
思路和算法

​ 试想一下如果不加限制地使用递归的方法来实现这道题,相信大家都能很容易地给出下面的实现(以 C++ 为例)(三目运算符撒):

class Solution {
public:
    int sumNums(int n) {
        return n == 0 ? 0 : n + sumNums(n - 1);
    }
};

​ 通常实现递归的时候我们都会利用条件判断语句来决定递归的出口,但由于题目的限制我们不能使用条件判断语句,那么我们是否能使用别的办法来确定递归出口呢?

答案就是逻辑运算符的短路性质,或者直接return

解法

java解法

class Solution {

    public int sumNums(int n) {
        int sum = n;
        boolean flag = n > 0  && (sum += sumNums(n - 1)) > 0;
        return sum;
    }
}

C++解法

// 解法一
class Solution {
public:
    int sumNums(int n) {
        return n == 0 ? 0 : n + sumNums(n - 1);
    }
};

// 解法二
class Solution {
public:
    int sumNums(int n) {
        n && (n += sumNums(n-1));
        return n;
    }
};

C语言解法

// 解法一
int sumNums(int n){
    return n == 0 ? 0 : n + sumNums(n - 1);
}

// 解法二
int sumNums(int n){
  int sum = n;
  bool flag = n > 0  && (sum += sumNums(n - 1)) > 0;
	return sum;
}

Python解法

class Solution:
    def sumNums(self, n: int) -> int:
        return sum(range(n+1))

你可能感兴趣的:(leetcode,数据结构&算法)