【网络流】网络扩容

【问题描述】
	给定一张有向图,每条边都有一个容量C和一个扩容费用W。这里扩容费用是指将容量扩大1所需的费用。求:
1、 在不扩容的情况下,1到N的最大流;
2、 将1到N的最大流增加K所需的最小扩容费用。
【输入格式】network.in
	输入文件的第一行包含三个整数N,M,K,表示有向图的点数、边数以及所需要增加的流量。
	接下来的M行每行包含四个整数u,v,C,W,表示一条从u到v,容量为C,扩容费用为W的边。
【输出格式】network.out
	输出文件一行包含两个整数,分别表示问题1和问题2的答案。
【输入样例】
5 8 2
1 2 5 8
2 5 9 9
5 1 6 2
5 1 1 8
1 2 8 7
2 5 4 9
1 2 1 1
1 4 2 1
【输出样例】
	13 19
【数据规模】
	30%的数据中,N<=100
	100%的数据中,N<=1000,M<=5000,K<=10
这是一道最大流加最小费用流的问题。

最大流就不再多说了。

求出了最大流之后有个残量网络,将这些边的费用设为0(原图中剩余的流量免费),重新加入一些边(前提是原图中有这些边,于是),流量为k,费用为扩容费用,再加一个超级源,连一条容量为k,费用为0的边(限制流量最大为k),最后求一次最小费用流即可。

Accode:

#include 
#include 
#include 
#include 
#define min(a, b) ((a) < (b) ? (a) : (b))
#define max(a, b) ((a) > (b) ? (a) : (b))

const char fi[] = "network.in";
const char fo[] = "network.out";
const int maxN = 1010;
const int SIZE = 0x3ff;
const int MAX = 0x3f3f3f3f;
const int MIN = ~MAX;

struct Edge
{
    int u, v, f, c;
    Edge *next, *back;
};

Edge *edge[maxN];
Edge *pre[maxN];
bool mp[maxN][maxN];
int w[maxN][maxN];
int d[maxN];
int cnt[maxN];
int q[SIZE + 1];
int n, m, K, S = 1, T, f, r;

void init_file()
{
    freopen(fi, "r", stdin);
    freopen(fo, "w", stdout);
    return;
}

inline int getint()
{
    int res = 0; char tmp;
    while (!isdigit(tmp = getchar()));
    do res = (res << 3) + (res << 1) + tmp - '0';
    while (isdigit(tmp = getchar()));
    return res;
}

inline void insert(int u, int v, int f, int c)
{
    Edge *p = new Edge;
    p -> u = u; p -> v = v;
    p -> f = f; p -> c = c;
    p -> next = edge[u];
    edge[u] = p;
    p = new Edge;
    p -> u = v; p -> v = u;
    p -> f = 0; p -> c = -c;
    p -> next = edge[v];
    edge[v] = p;
    edge[u] -> back = edge[v];
    edge[v] -> back = edge[u];
    return;
}    

void readdata()
{
    T = n = getint(); m = getint(); K = getint();
    for (; m; --m)
    {
        int u = getint(), v = getint(),
        f = getint(), c = getint();
        mp[u][v] = 1;
	//先用mp数组记录一下原图中有哪些边。
        w[u][v] = w[u][v] ? min(w[u][v], c) : c;
	//记录扩容费用。
        insert(u, v, f, 0);
    }
    return;
}

int Sap(int u, int Lim)
{
    if (u == T) return Lim;
    int tmp = 0;
    for (Edge *p = edge[u]; p; p = p -> next)
    if (p -> f > 0 && d[u] == d[p -> v] + 1)
    {
        int k = Sap(p -> v, min(p -> f, Lim - tmp));
        p -> f -= k;
        p -> back -> f += k;
        if ((tmp += k) == Lim) return tmp;
    }
    if (d[S] >= n) return tmp;
    if ((--cnt[d[u]]) == 0) d[S] = n;
    ++cnt[++d[u]];
    return tmp;
}

int Spfa()
{
    memset(pre, 0, sizeof pre);
    memset(d, 0x3f, sizeof d);
    memset(cnt, 0, sizeof cnt);
    f = r = 0;
    d[S] = 0;
    ++cnt[q[r++] = S];
    r &= SIZE;
    while (f != r)
    {
        int u = q[f++];
        f &= SIZE;
        --cnt[u];
        for (Edge *p = edge[u]; p; p = p -> next)
        if (p -> f > 0)
        {
            int v = p -> v;
            int c = p -> c;
            if (d[u] + c < d[v])
            {
                d[v] = d[u] + c;
                pre[v] = p;
                if (!cnt[v])
                {
                    ++cnt[q[r++] = v];
                    r &= SIZE;
                }
            }
        }
    }
    return pre[T] != NULL;
}

int min_fee()
{
    int ans = 0;
    while (Spfa())
    {
        int max_flow = MAX;
        for (Edge *p = pre[T]; p; p = pre[p -> u])
            max_flow = min(max_flow, p -> f);
        for (Edge *p = pre[T]; p; p = pre[p -> u])
        {
            p -> f -= max_flow;
            p -> back -> f += max_flow;
        }
        ans += d[T] * max_flow;
    }
    return ans;
}

void work()
{
    int ans = 0;
    cnt[0] = n;
    while (d[S] < n) ans += Sap(S, MAX);
    for (int u = 1; u < n + 1; ++u)
    for (int v = 1; v < n + 1; ++v)
        if (mp[u][v]) insert(u, v, MAX, w[u][v]);
    insert(S = 0, 1, K, 0);
    printf("%d %d\n", ans, min_fee());
    return;
}

int main()
{
    init_file();
    readdata();
    work();
    return 0;
}

#undef min
#undef max
再贴一个求费用流时没有退流的骗分程序,能过90分。
#include 
#include 
#include 
#include 
#define min(a, b) ((a) < (b) ? (a) : (b))
#define max(a, b) ((a) > (b) ? (a) : (b))

const char fi[] = "network.in";
const char fo[] = "network.out";
const int maxN = 1010;
const int SIZE = 0x3ff;
const int MAX = 0x3f3f3f3f;
const int MIN = ~MAX;

struct Edge
{
    int u, v, f, c;
    Edge *next, *back;
};

Edge *edge[maxN];
int d[maxN];
int cnt[maxN];
int q[SIZE + 1];
int n, m, K, S = 1, T, f, r;

void init_file()
{
    freopen(fi, "r", stdin);
    freopen(fo, "w", stdout);
    return;
}

inline int getint()
{
    int res = 0; char tmp;
    while (!isdigit(tmp = getchar()));
    do res = (res << 3) + (res << 1) + tmp - '0';
    while (isdigit(tmp = getchar()));
    return res;
}

inline void insert(int u, int v, int f, int c)
{
    for (Edge *p = edge[u]; p; p = p -> next)
    if (p -> v == v)
    {
        p -> f += f;
        p -> c = min(p -> c, c);
        return;
    }
    Edge *p = new Edge;
    p -> u = u; p -> v = v;
    p -> f = f; p -> c = c;
    p -> next = edge[u];
    edge[u] = p;
    p = new Edge;
    p -> u = v; p -> v = u;
    p -> f = 0;
    p -> c = MAX;
    p -> next = edge[v];
    edge[v] = p;
    edge[u] -> back = edge[v];
    edge[v] -> back = edge[u];
    return;
}

void readdata()
{
    T = n = getint(); m = getint(); K = getint();
    for (; m; --m)
    {
        int u = getint(), v = getint(),
        f = getint(), c = getint();
        insert(u, v, f, c);
    }
    return;
}

int Sap(int u, int Lim)
{
    if (u == T) return Lim;
    int tmp = 0;
    for (Edge *p = edge[u]; p; p = p -> next)
    if (p -> f > 0 && d[u] == d[p -> v] + 1)
    {
        int k = Sap(p -> v, min(p -> f, Lim - tmp));
        p -> f -= k;
        p -> back -> f += k;
        if ((tmp += k) == Lim) return tmp;
    }
    if (d[S] >= n) return tmp;
    if ((--cnt[d[u]]) == 0) d[S] = n;
    ++cnt[++d[u]];
    return tmp;
}

int Spfa()
{
    memset(d, 0x3f, sizeof d);
    memset(cnt, 0, sizeof cnt);
    d[S] = 0;
    ++cnt[q[r++] = S];
    r &= SIZE;
    while (f != r)
    {
        int u = q[f++];
        f &= SIZE;
        --cnt[u];
        for (Edge *p = edge[u]; p; p = p -> next)
        if (p -> c < MAX)
        {
            int v = p -> v;
            int c = (p -> c) * max(0, K - p -> f);
            if (d[u] + c < d[v])
            {
                d[v] = d[u] + c;
                if (!cnt[v])
                {
                    ++cnt[q[r++] = v];
                    r &= SIZE;
                }
            }
        }
    }
    return d[T];
}

void work()
{
    int ans = 0;
    cnt[0] = n;
    while (d[S] < n) ans += Sap(S, MAX);
    printf("%d %d\n", ans, K ? Spfa() : 0);
    return;
}

int main()
{
    init_file();
    readdata();
    work();
    return 0;
}

#undef min
#undef max

你可能感兴趣的:(OI)