作者信息:
Ping Lu,爱荷华州立大学,爱荷华州艾姆斯市
Hongsheng Sun
Bruce Tsai
总结人: 鲁鹏,北京理工大学宇航学院
2019.05.09
to be added …
约束 S 1 = q α − Q α ≤ 0 S_{1} = q\alpha - Q_{\alpha} \leq 0 S1=qα−Qα≤0零阶约束,因为控制量 1 b \boldsymbol{1}_{b} 1b直接出现在约束中(通过 α \alpha α),约束 S 3 = q − q m a x ≤ 0 S_{3} = q - q_{max} \leq 0 S3=q−qmax≤0是一阶约束,因为控制量 1 b \boldsymbol{1}_{b} 1b出现在 S 3 S_{3} S3对时间的一阶导数中。
文章中的公式有很多值得注意的细节,文章中的错误也一并记录下来。
归一化后的方程[1]
r ˙ = V V ˙ = − r + T ( τ ) 1 b \begin{aligned} \dot{\boldsymbol{r}} =& \boldsymbol{V} \\ \dot{\boldsymbol{V}} = -\boldsymbol{r} +& T(\tau)\boldsymbol{1}_{b} \\ \end{aligned} r˙=V˙=−r+VT(τ)1b
动力学方程可以简化为这种形式的前提是引力加速度做如下近似
g = − ( μ E / r 0 3 ) r = − ω 2 r \boldsymbol{g} = -(\mu_{E}/r^{3}_{0})\boldsymbol{r} = -\omega^{2}\boldsymbol{r} g=−(μE/r03)r=−ω2r
为了减小引力简化带来的误差,在每一次制导环的开始更新 r 0 r_{0} r0.
该方程的解析解如下所示[1-3]
[ p v ( τ ) − p r ( τ ) ] = [ cos τ I 3 sin τ I 3 − sin τ I 3 cos τ I 3 ] [ p v 0 − p r 0 ] = Ω ( τ ) [ p v 0 − p r 0 ] \begin{bmatrix} \boldsymbol{p}_{v}(\tau)\\ -\boldsymbol{p}_{r}(\tau)\\ \end{bmatrix} = \begin{bmatrix} \cos{\tau}{I}_{3} & \sin{\tau}{I}_{3}\\ -\sin{\tau}{I}_{3} & \cos{\tau}{I}_{3}\\ \end{bmatrix} \begin{bmatrix} \boldsymbol{p}_{v0}\\ -\boldsymbol{p}_{r0}\\ \end{bmatrix} = \Omega(\tau) \begin{bmatrix} \boldsymbol{p}_{v0}\\ -\boldsymbol{p}_{r0}\\ \end{bmatrix} [pv(τ)−pr(τ)]=[cosτI3−sinτI3sinτI3cosτI3][pv0−pr0]=Ω(τ)[pv0−pr0]
[ r ( τ ) V ( τ ) ] = Ω ( τ ) [ r 0 V 0 ] + Γ ( τ ) W \begin{bmatrix} \boldsymbol{r}(\tau)\\ \boldsymbol{V}(\tau)\\ \end{bmatrix} = \Omega(\tau) \begin{bmatrix} \boldsymbol{r}_{0}\\ \boldsymbol{V}_{0}\\ \end{bmatrix} + \Gamma(\tau) \mathrm{W} [r(τ)V(τ)]=Ω(τ)[r0V0]+Γ(τ)W
Γ ( τ ) = [ sin τ I 3 − cos τ I 3 cos τ I 3 sin τ I 3 ] \Gamma(\tau) = \begin{bmatrix} \sin{\tau}{I}_{3} & -\cos{\tau}{I}_{3}\\ \cos{\tau}{I}_{3} & \sin{\tau}{I}_{3}\\ \end{bmatrix} Γ(τ)=[sinτI3cosτI3−cosτI3sinτI3]
W = [ I c I s ] = [ ∫ 0 τ 1 p v ( ζ ) cos ( ζ ) T ( ζ ) d ζ ∫ 0 τ 1 p v ( ζ ) sin ( ζ ) T ( ζ ) d ζ ] \mathrm{W} = \begin{bmatrix} I_{c} \\ I_{s} \end{bmatrix} = \begin{bmatrix} \int^{\tau}_{0}\boldsymbol{1}_{pv}(\zeta)\cos(\zeta) T(\zeta) d\zeta \\ \int^{\tau}_{0}\boldsymbol{1}_{pv}(\zeta)\sin(\zeta) T(\zeta) d\zeta \\ \end{bmatrix} W=[IcIs]=[∫0τ1pv(ζ)cos(ζ)T(ζ)dζ∫0τ1pv(ζ)sin(ζ)T(ζ)dζ]
其中, I 3 I_{3} I3是 3 × 3 3\times 3 3×3的单位矩阵。通过公式可以看出初始协态变量的模 ( p v 0 T p v 0 + p r 0 T p r 0 ) (\boldsymbol{p}_{v0}^{T}\boldsymbol{p}_{v0}+\boldsymbol{p}_{r0}^{T}\boldsymbol{p}_{r0}) (pv0Tpv0+pr0Tpr0)对协态变量之后的方向变化没有任何影响,只影响协态变量的大小。考虑到状态的解析解只和 1 p v \boldsymbol{1}_{pv} 1pv有关,所以初始协态变量的模对状态也没有影响。
首先声明,程序中我在求解质量推力和发动机阀门大小时未对质量和时间归一化,只是在每个时间区间用对应的引力加速度对推力加速度 T ( t ) T(t) T(t)进行了归一化。
m ( t ) = m 0 − T v a c c t T ( t ) = T v a c m ( t ) g 0 η ( t ) = 1 \begin{aligned} m(t) =& m_{0} - \frac{T_{vac}}{c}t \\ T(t) =& \frac{T_{vac}}{m(t)g_{0}} \\ \eta(t) =& 1 \\ \end{aligned} m(t)=T(t)=η(t)=m0−cTvactm(t)g0Tvac1
其中, T v a c T_{vac} Tvac是发动机真空推力, g 0 g_{0} g0是运载器所在某时间区间 [ t i , t i + τ ] \lbrack t_{i},t_{i}+\tau \rbrack [ti,ti+τ]内的引力加速度值,喷嘴等效气流速度(nozzle exit velocity) c = g E I s p c = g_{E}I_{sp} c=gEIsp, g E g_{E} gE是地球表面重力加速度, m ( t ) m(t) m(t)是运载器质量, m 0 m_{0} m0是运载器质量初始值, T ( t ) T(t) T(t)是被 g 0 g_{0} g0归一化后的推力加速度, η \eta η是发动机阀门。
随着 T T T不断增大,假设在 t c t_{c} tc时刻,推力加速度达到最大(取 T m a x = 4 g e T_{max}=4g_{e} Tmax=4ge),此后推力加速度 T T T保持最大,并且 t c t_{c} tc时刻在 [ t i , t i + τ ] \lbrack t_{i},t_{i}+\tau\rbrack [ti,ti+τ]内,那么
T v a c [ m 0 − ( T v a c / c ) t c ] g 0 = T m a x g 0 \frac{T_{vac}}{\lbrack m_{0}-(T_{vac}/c)t_{c}\rbrack g_{0}} = \frac{T_{max}}{g_{0}} [m0−(Tvac/c)tc]g0Tvac=g0Tmax
所以
t c = c ( m 0 T v a c − 1 T m a x ) t_c = c(\frac{m_{0}}{T_{vac}}-\frac{1}{T_{max}}) tc=c(Tvacm0−Tmax1)
m ( t ) = m t c e − ( T m a x / c ) t T ( t ) = T m a x g 0 η ( t ) = T m a x m ( t ) T v a c \begin{aligned} m(t) =& m_{t_{c}}e^{-(T_{max}/c)t} \\ T(t) =& \frac{T_{max}}{g_{0}} \\ \eta(t) =& \frac{T_{max}m(t)}{T_{vac}} \\ \end{aligned} m(t)=T(t)=η(t)=mtce−(Tmax/c)tg0TmaxTvacTmaxm(t)
此时的 g 0 g_{0} g0是某时间区间 [ t j , t j + τ ] \lbrack t_{j},t_{j}+\tau \rbrack [tj,tj+τ](注意 t j + τ ⩾ t c t_{j}+\tau \geqslant t_{c} tj+τ⩾tc)内引力加速度, T ( t ) T(t) T(t)是被 g 0 g_{0} g0归一化后的推力加速度, m t c m_{t_{c}} mtc是 t c t_{c} tc时刻运载器的质量。
运载器在垂直上升结束后制导率才开始工作,不同运载器有不同的垂直上升时间 t 0 t_{0} t0。文献[5]中垂直上升时间 t 0 t_{0} t0取9s,文献[1]中垂直上升时间 t 0 t_{0} t0取5s。
垂直上升阶段运载器推力加速度满足最大推力加速度约束,此时运载器所受加速度
a v e h i c l e ( t ) = T v a c − m ( t ) g E m ( t ) a_{vehicle}(t) = \frac{T_{vac} - m(t)g_{E}}{m(t)} avehicle(t)=m(t)Tvac−m(t)gE
所以,对加速度积分可以得到竖直上升的速度 v 0 x ( t ) v_{0x}(t) v0x(t)
v 0 = [ v 0 x ( t 0 ) , v 0 y , v 0 z ] T v 0 x ( t ) = − c ln ( m 0 − T v a c c t ) − g E t + c ln ( m 0 ) \begin{aligned} v_{0} = &\lbrack v_{0x}(t_{0}), v_{0y}, v_{0z}\rbrack ^{T}\\ v_{0x}(t) = -c\ln(&m_{0}-\frac{T_{vac}}{c}t) - g_{E}t + c\ln(m_{0}) \end{aligned} v0=v0x(t)=−cln([v0x(t0),v0y,v0z]Tm0−cTvact)−gEt+cln(m0)
其中 v 0 y , v 0 z v_{0y},v_{0z} v0y,v0z是由地球自转引起的水平面内的速度在y和z轴上的分量。对速度 v 0 x ( t ) v_{0x}(t) v0x(t)积分可得 r 0 x ( t ) r_{0x}(t) r0x(t)
r 0 = [ r 0 x ( t 0 ) , v 0 y t 0 , v 0 z t 0 ] T r 0 x ( t ) = c 2 T v a c ( m 0 − T v a c c t ) [ ln ( m 0 − T v a c c t ) − 1 ] − 1 2 g E t 2 + c ln ( m 0 ) t + c 2 T v a c m 0 [ 1 − ln ( m 0 ) ] \begin{aligned} r_{0} = \lbrack r_{0x}(t_{0}), v_{0y}&t_{0}, v_{0z}t_{0}\rbrack ^{T} \\ r_{0x}(t) = \frac{c^2}{T_{vac}}(m_{0} - \frac{T_{vac}}{c}t) \lbrack \ln(&m_{0} - \frac{T_{vac}}{c}t)-1 \rbrack - \frac{1}{2}g_{E}t^{2} + \\ c\ln(m_{0})t + \frac{c^2}{T_{vac}}m_{0}\lbrack &1 - \ln(m_{0}) \rbrack \end{aligned} r0=[r0x(t0),v0yr0x(t)=Tvacc2(m0−cTvact)[ln(cln(m0)t+Tvacc2m0[t0,v0zt0]Tm0−cTvact)−1]−21gEt2+1−ln(m0)]
方程如下[1]
1 2 r f T r f − 1 2 r f ∗ 2 = 0 \frac{1}{2}\boldsymbol{r}^{T}_{f}\boldsymbol{r}_{f} - \frac{1}{2}r^{*2}_{f} = 0 21rfTrf−21rf∗2=0
1 N T ( r f × V f ) − ∥ r f × V f ∥ cos i ∗ = 0 \boldsymbol{1}^{T}_{N}(\boldsymbol{r}_{f}\times \boldsymbol{V}_{f})-\lVert \boldsymbol{r}_{f}\times \boldsymbol{V}_{f}\rVert \cos{i^{*}} = 0 1NT(rf×Vf)−∥rf×Vf∥cosi∗=0
r f T V f − r f V f sin γ f ∗ = 0 \boldsymbol{r}^{T}_{f}\boldsymbol{V}_{f} - r_{f}V_{f}\sin{\gamma^{*}_{f}} = 0 rfTVf−rfVfsinγf∗=0
( V f T p r f ) r f 2 − ( r f T p V f ) V f 2 + ( r f T V f ) ( V f 2 − r f T p r f ) = 0 (\boldsymbol{V}^{T}_{f}\boldsymbol{p}_{rf})r^{2}_{f} - (\boldsymbol{r}^{T}_{f}\boldsymbol{p}_{Vf})V^{2}_{f} + (\boldsymbol{r}^{T}_{f}\boldsymbol{V}_{f})(V^{2}_{f} - \boldsymbol{r}^{T}_{f}\boldsymbol{p}_{rf}) = 0 (VfTprf)rf2−(rfTpVf)Vf2+(rfTVf)(Vf2−rfTprf)=0
V f T p V f − V f 2 = 0 \boldsymbol{V}^{T}_{f}\boldsymbol{p}_{Vf} - V^{2}_{f} = 0 VfTpVf−Vf2=0
( h f T p r f ) [ h f T ( r f × 1 N ) ] + ( h f T p V f ) [ h f T ( V f × 1 N ) ] = 0 (\boldsymbol{h}^{T}_{f}\boldsymbol{p}_{rf})\lbrack \boldsymbol{h}^{T}_{f}(\boldsymbol{r}_{f}\times \boldsymbol{1}_{N})\rbrack + (\boldsymbol{h}^{T}_{f}\boldsymbol{p}_{Vf})\lbrack \boldsymbol{h}^{T}_{f}(\boldsymbol{V}_{f}\times \boldsymbol{1}_{N})\rbrack = 0 (hfTprf)[hfT(rf×1N)]+(hfTpVf)[hfT(Vf×1N)]=0
f 1 f_1 f1对状态变量和协态变量求导
∂ f 1 ∂ r f = r f , ∂ f 1 ∂ V f = 0 , ∂ f 1 ∂ p V f = 0 , ∂ f 1 ∂ p r f = 0 \frac{\partial f_{1}}{\partial \boldsymbol{r}_{f}} = \boldsymbol{r}_{f}, \frac{\partial f_{1}}{\partial \boldsymbol{V}_{f}} = \boldsymbol{0}, \frac{\partial f_{1}}{\partial \boldsymbol{p}_{Vf}} = \boldsymbol{0}, \frac{\partial f_{1}}{\partial \boldsymbol{p}_{rf}} = \boldsymbol{0} ∂rf∂f1=rf,∂Vf∂f1=0,∂pVf∂f1=0,∂prf∂f1=0
f 2 f_2 f2对状态变量和协态变量求导
∂ f 2 ∂ r f = V f × 1 N + ( V f × ) T ( r f × V f ) cos i ∗ ∥ r f × V f ∥ \frac{\partial f_{2}}{\partial \boldsymbol{r}_{f}} = \boldsymbol{V}^{\times}_{f}\boldsymbol{1}_{N} + (\boldsymbol{V}^{\times}_{f})^{T}(\boldsymbol{r}_{f}\times \boldsymbol{V}_{f})\frac{\cos{i^{*}}}{\lVert \boldsymbol{r}_{f}\times \boldsymbol{V}_{f}\rVert} ∂rf∂f2=Vf×1N+(Vf×)T(rf×Vf)∥rf×Vf∥cosi∗
∂ f 2 ∂ V f = ( r f × ) T 1 N + r f × ( r f × V f ) cos i ∗ ∥ r f × V f ∥ \frac{\partial f_{2}}{\partial \boldsymbol{V}_{f}} = (\boldsymbol{r}^{\times}_{f})^{T}\boldsymbol{1}_{N} + \boldsymbol{r}^{\times}_{f}(\boldsymbol{r}_{f}\times \boldsymbol{V}_{f})\frac{\cos{i^{*}}}{\lVert \boldsymbol{r}_{f}\times \boldsymbol{V}_{f}\rVert} ∂Vf∂f2=(rf×)T1N+rf×(rf×Vf)∥rf×Vf∥cosi∗
∂ f 2 ∂ p V f = 0 , ∂ f 2 ∂ p r f = 0 \frac{\partial f_{2}}{\partial \boldsymbol{p}_{Vf}} = \boldsymbol{0}, \frac{\partial f_{2}}{\partial \boldsymbol{p}_{rf}} = \boldsymbol{0} ∂pVf∂f2=0,∂prf∂f2=0
f 3 f_3 f3对状态变量和协态变量求导
∂ f 3 ∂ r f = V f − ( V f sin γ ∗ ) r f / r f \frac{\partial f_{3}}{\partial \boldsymbol{r}_{f}} = \boldsymbol{V}_{f} - (V_{f}\sin{\gamma^{*})}\boldsymbol{r}_{f}/r_{f} ∂rf∂f3=Vf−(Vfsinγ∗)rf/rf
∂ f 3 ∂ V f = r f − ( r f sin γ ∗ ) V f / V f \frac{\partial f_{3}}{\partial \boldsymbol{V}_{f}} = \boldsymbol{r}_{f} - (r_{f}\sin{\gamma^{*})}\boldsymbol{V}_{f}/V_{f} ∂Vf∂f3=rf−(rfsinγ∗)Vf/Vf
∂ f 3 ∂ p V f = 0 , ∂ f 3 ∂ p r f = 0 \frac{\partial f_{3}}{\partial \boldsymbol{p}_{Vf}} = \boldsymbol{0}, \frac{\partial f_{3}}{\partial \boldsymbol{p}_{rf}} = \boldsymbol{0} ∂pVf∂f3=0,∂prf∂f3=0
f 4 f_{4} f4对状态变量和协态变量求导
∂ f 4 ∂ r f = 2 ( V f T p r f ) r f − V f 2 p v f + V f 2 V f − ( r f T p r f ) V f − ( r f T V f ) p r f \frac{\partial f_{4}}{\partial \boldsymbol{r}_{f}} = 2(\boldsymbol{V}^{T}_{f}\boldsymbol{p}_{rf})\boldsymbol{r}_{f} - V^{2}_{f}\boldsymbol{p}_{vf} + V^{2}_{f}\boldsymbol{V}_{f} - (\boldsymbol{r}^{T}_{f}\boldsymbol{p}_{rf})\boldsymbol{V}_{f} - (\boldsymbol{r}^{T}_{f}\boldsymbol{V}_{f})\boldsymbol{p}_{rf} ∂rf∂f4=2(VfTprf)rf−Vf2pvf+Vf2Vf−(rfTprf)Vf−(rfTVf)prf
∂ f 4 ∂ V f = r f 2 p r f − 2 ( r f T p V f ) V f + V f 2 r f + 2 ( r f T V f ) V f − ( r f T p r f ) r f \frac{\partial f_{4}}{\partial \boldsymbol{V}_{f}} = r^{2}_{f}\boldsymbol{p}_{rf} - 2(\boldsymbol{r}^{T}_{f}\boldsymbol{p}_{Vf})\boldsymbol{V}_{f} + V^{2}_{f}\boldsymbol{r}_{f} + 2(\boldsymbol{r}^{T}_{f}\boldsymbol{V}_{f})\boldsymbol{V}_{f} - (\boldsymbol{r}^{T}_{f}\boldsymbol{p}_{rf})\boldsymbol{r}_{f} ∂Vf∂f4=rf2prf−2(rfTpVf)Vf+Vf2rf+2(rfTVf)Vf−(rfTprf)rf
∂ f 4 ∂ p V f = − V f 2 r f , ∂ f 4 ∂ p r f = r f 2 V f − ( r f T V f ) r f \frac{\partial f_{4}}{\partial \boldsymbol{p}_{Vf}} = -V^{2}_{f}\boldsymbol{r}_{f}, \frac{\partial f_{4}}{\partial \boldsymbol{p}_{rf}} = r^{2}_{f}\boldsymbol{V}_{f} - (\boldsymbol{r}^{T}_{f}\boldsymbol{V}_{f})\boldsymbol{r}_{f} ∂pVf∂f4=−Vf2rf,∂prf∂f4=rf2Vf−(rfTVf)rf
f 5 f_{5} f5对状态变量和协态变量求导
∂ f 5 ∂ r f = 0 , ∂ f 5 ∂ V f = p V f − 2 V f \frac{\partial f_{5}}{\partial \boldsymbol{r}_{f}} = \boldsymbol{0}, \frac{\partial f_{5}}{\partial \boldsymbol{V}_{f}} = \boldsymbol{p}_{Vf}-2\boldsymbol{V}_{f} ∂rf∂f5=0,∂Vf∂f5=pVf−2Vf
∂ f 5 ∂ p V f = V f , ∂ f 5 ∂ p r f = 0 \frac{\partial f_{5}}{\partial \boldsymbol{p}_{Vf}} = \boldsymbol{V}_{f}, \frac{\partial f_{5}}{\partial \boldsymbol{p}_{rf}} = \boldsymbol{0} ∂pVf∂f5=Vf,∂prf∂f5=0
f 6 f_{6} f6对状态变量和协态变量求导
∂ f 6 ∂ r f = [ h f T ( r f × 1 N ) ] V f × p r f + ( h f T p r f ) [ ( V f × ) T 1 N × + ( 1 N × ) T V f × ] r f + [ h f T ( V f × 1 N ) ] V f × p V f + ( h f T p V f ) [ ( V f × ) 2 1 N ] \begin{aligned} \frac{\partial f_{6}}{\partial \boldsymbol{r}_{f}} = &\lbrack \boldsymbol{h}^{T}_{f}(\boldsymbol{r}_{f}\times \boldsymbol{1}_{N})\rbrack \boldsymbol{V}^{\times}_{f}\boldsymbol{p}_{rf} + (\boldsymbol{h}^{T}_{f}\boldsymbol{p}_{rf})\lbrack (\boldsymbol{V}^{\times}_{f})^{T}\boldsymbol{1}^{\times}_{N} + (\boldsymbol{1}^{\times}_{N})^{T}\boldsymbol{V}^{\times}_{f}\rbrack \boldsymbol{r}_{f}\\ &+\lbrack \boldsymbol{h}^{T}_{f}(\boldsymbol{V}_{f}\times \boldsymbol{1}_{N})\rbrack \boldsymbol{V}^{\times}_{f}\boldsymbol{p}_{Vf} + (\boldsymbol{h}^{T}_{f}\boldsymbol{p}_{Vf}) \lbrack (\boldsymbol{V}^{\times}_{f})^{2}\boldsymbol{1}_{N}\rbrack \end{aligned} ∂rf∂f6=[hfT(rf×1N)]Vf×prf+(hfTprf)[(Vf×)T1N×+(1N×)TVf×]rf+[hfT(Vf×1N)]Vf×pVf+(hfTpVf)[(Vf×)21N]
∂ f 6 ∂ V f = [ h f T ( r f × 1 N ) ] ( r f × ) T p r f + ( h f T p r f ) [ − ( r f × ) 2 1 N ] + [ h f T ( V f × 1 N ) ] ( r f × ) T p V f + ( h f T p V f ) ( r f × 1 N × + 1 N × r f × ) V f \begin{aligned} \frac{\partial f_{6}}{\partial \boldsymbol{V}_{f}} = &\lbrack \boldsymbol{h}^{T}_{f}(\boldsymbol{r}_{f}\times \boldsymbol{1}_{N})\rbrack (\boldsymbol{r}^{\times}_{f})^{T}\boldsymbol{p}_{rf} + (\boldsymbol{h}^{T}_{f}\boldsymbol{p}_{rf})\lbrack -(\boldsymbol{r}^{\times}_{f})^{2}\boldsymbol{1}_{N}\rbrack \\ &+\lbrack \boldsymbol{h}^{T}_{f}(\boldsymbol{V}_{f}\times \boldsymbol{1}_{N})\rbrack (\boldsymbol{r}^{\times}_{f})^{T}\boldsymbol{p}_{Vf} + (\boldsymbol{h}^{T}_{f}\boldsymbol{p}_{Vf})(\boldsymbol{r}^{\times}_{f}\boldsymbol{1}^{\times}_{N} + \boldsymbol{1}^{\times}_{N}\boldsymbol{r}^{\times}_{f}) \boldsymbol{V}_{f} \end{aligned} ∂Vf∂f6=[hfT(rf×1N)](rf×)Tprf+(hfTprf)[−(rf×)21N]+[hfT(Vf×1N)](rf×)TpVf+(hfTpVf)(rf×1N×+1N×rf×)Vf
∂ f 6 ∂ p V f = [ h f T ( V f × 1 N ) ] h f \frac{\partial f_{6}}{\partial \boldsymbol{p}_{Vf}} = \lbrack \boldsymbol{h}^{T}_{f}(\boldsymbol{V}_{f}\times \boldsymbol{1}_{N})\rbrack \boldsymbol{h}_{f} ∂pVf∂f6=[hfT(Vf×1N)]hf
∂ f 6 ∂ p r f = [ h f T ( r f × 1 N ) ] h f \frac{\partial f_{6}}{\partial \boldsymbol{p}_{rf}} = \lbrack \boldsymbol{h}^{T}_{f}(\boldsymbol{r}_{f}\times \boldsymbol{1}_{N})\rbrack \boldsymbol{h}_{f} ∂prf∂f6=[hfT(rf×1N)]hf
计算雅克比矩阵,用于牛顿迭代法求解协态变量初值,过程跟参考文献[2]方法相同。考虑到完整性,在下面列出推导过程
定义 U T = [ S T λ T ] {U}^{T}=\left[S^{T}\quad \lambda^{T}\right] UT=[STλT], J T = [ I c T ( τ ) I s T ( τ ) ] {J}^{T}=\left[I_{c}^{T}(\tau)\quad I_{s}^{T}(\tau)\right] JT=[IcT(τ)IsT(τ)],其中 τ = t − t i \tau=t-t_{i} τ=t−ti,则有下式成立
d U ( t i + τ ) = B ( τ ) d U ( t i ) , d U T ( t 0 ) = [ 0 d λ 0 T ] d {U}\left(t_{i}+\tau\right)=B(\tau) d{U}\left(t_{i}\right) ,\quad d{U}^{T}\left(t_{0}\right)=\left[ \begin{array}{ll}{0} & {d \lambda_{0}^{T}}\end{array}\right] dU(ti+τ)=B(τ)dU(ti),dUT(t0)=[0dλ0T]
其中
B ( τ ) = [ Ω Γ d J ( τ ) d λ ( t i ) 0 Ω ] = [ Ω Γ ( τ ) [ d I c / d λ ( t i ) d I s / d λ ( t i ) ] 0 Ω ] B(\tau)=\left[ \begin{array}{cc}{\Omega} & {\Gamma \frac{d \boldsymbol{J}(\tau)}{d \boldsymbol{\lambda}\left(t_{i}\right)}} \\ \boldsymbol{0} & {\Omega}\end{array}\right]= \begin{bmatrix} \Omega & \Gamma(\tau)\begin{bmatrix} dI_{c}/{d}\lambda(t_{i})\\ {dI_{s}}/{d}\lambda(t_{i})\end{bmatrix}\\ \boldsymbol{0} & \Omega \end{bmatrix} B(τ)=[Ω0Γdλ(ti)dJ(τ)Ω]=⎣⎡Ω0Γ(τ)[dIc/dλ(ti)dIs/dλ(ti)]Ω⎦⎤
K ( τ ) = cos ( τ ) T ( τ ) ∥ p V ( τ ) ∥ [ I 3 − p V ( τ ) ( p V ( τ ) ) T ∥ p V ( τ ) ∥ 2 ] [ cos ( τ ) I 3 sin ( τ ) I 3 ] K(\tau)=\frac{\cos(\tau)T(\tau)}{\lVert \boldsymbol{p}_{V}(\tau)\rVert}\lbrack {I}_{3} - \frac{\boldsymbol{p}_{V}(\tau)({\boldsymbol{p}_{V}(\tau)})^{T}}{{\lVert \boldsymbol{p}_{V}(\tau)\rVert}^{2}}\rbrack \lbrack \cos(\tau){I}_{3} \enspace \sin(\tau){I}_{3}\rbrack K(τ)=∥pV(τ)∥cos(τ)T(τ)[I3−∥pV(τ)∥2pV(τ)(pV(τ))T][cos(τ)I3sin(τ)I3]
d I c ( τ ) d λ ( t i ) = τ [ 7 K ( 0 ) + 32 K ( δ ) + 12 K ( 2 δ ) + 32 K ( 3 δ ) + 7 K ( 4 δ ) ] 90 \frac{d{I}_{c}(\tau)}{d{\lambda}(t_{i})} = \frac{\tau \lbrack 7{K}(0) + 32{K}(\delta) + 12{K}(2\delta) + 32{K}(3\delta) + 7{K}(4\delta)\rbrack}{90} dλ(ti)dIc(τ)=90τ[7K(0)+32K(δ)+12K(2δ)+32K(3δ)+7K(4δ)]
d I s ( τ ) d λ ( t i ) = τ [ 32 K ( δ ) tan ( δ ) + 12 K ( 2 δ ) tan ( 2 δ ) + 32 K ( 3 δ ) tan ( 3 δ ) + 7 K ( 4 δ ) tan ( 4 δ ) ] 90 \frac{d{I}_{s}(\tau)}{d{\lambda}(t_{i})} = \frac{\tau \lbrack 32{K}(\delta)\tan(\delta) + 12{K}(2\delta)\tan(2\delta) + 32{K}(3\delta)\tan(3\delta) + 7{K}(4\delta)\tan(4\delta)\rbrack}{90} dλ(ti)dIs(τ)=90τ[32K(δ)tan(δ)+12K(2δ)tan(2δ)+32K(3δ)tan(3δ)+7K(4δ)tan(4δ)]
Θ = ∏ i = 1 M − 1 B ( t i + 1 − t i ) \Theta = \prod^{M-1}_{i=1} B(t_{i+1}-t_{i}) Θ=i=1∏M−1B(ti+1−ti)
d Ψ = Ψ S d S f + Ψ λ d λ f = ( Ψ S Θ 12 + Ψ λ Θ 22 ) d λ 0 d{\Psi} = \Psi_{S}d{S}_{f} + \Psi_{\lambda}d{\lambda}_{f} = (\Psi_{S}\Theta_{12} + \Psi_{\lambda}\Theta_{22} )d{\lambda}_{0} dΨ=ΨSdSf+Ψλdλf=(ΨSΘ12+ΨλΘ22)dλ0
其中 Θ 12 \Theta_{12} Θ12和 Θ 22 \Theta_{22} Θ22是矩阵 Θ \Theta Θ的分块矩阵,因此雅克比矩阵 J a c o b \mathrm{Jacob} Jacob
J a c o b = d Ψ d λ 0 = Ψ S Θ 12 + Ψ λ Θ 22 \mathrm{Jacob} = \frac{d{\Psi}}{d{\lambda}_{0}} = \Psi_{S}\Theta_{12} + \Psi_{\lambda}\Theta_{22} Jacob=dλ0dΨ=ΨSΘ12+ΨλΘ22
作者将大气层内上升问题转化为了两点边值问题(TPBVPs),并使用有限差分法求解两点边值问题。解两点边值问题之前先要推导状态方程和协态方程中涉及的相关方程。
处理不等式约束时,当约束 S < 0 S < 0 S<0时,系统的协态变量微分方程取 − ∂ H / ∂ x -\partial{H}/\partial{\boldsymbol{x}} −∂H/∂x当约束 S = 0 S = 0 S=0时,才考虑将约束相关的项加入协态变量微分方程。
约束 S 1 = q α − Q α ≤ 0 S_{1}=q\alpha - Q_{\alpha} \leq 0 S1=qα−Qα≤0
当 S 1 = 0 S_{1} = 0 S1=0时
∂ q ∂ r = ∂ ( 1 2 ρ V r 2 ) ∂ r = 1 2 V r 2 ∂ ρ ∂ r + ρ ∂ V r ∂ r = 1 2 V r 2 ρ r r r + ρ ω ˉ E × V r \begin{aligned} \frac{\partial q}{\partial\boldsymbol{r}} =& \frac{\partial(\frac{1}{2}\rho V^{2}_{r})} {\partial\boldsymbol{r}} = \frac{1}{2} V^{2}_{r} \frac{\partial\rho}{\partial{\boldsymbol{r}}} + \rho \frac{\partial V_{r}}{\partial{\boldsymbol{r}}} \\ =& \frac{1}{2} V^{2}_{r} \rho_{r} \frac{\boldsymbol{r}}{r} + \rho \bar{\omega}^{\times}_{E}\boldsymbol{V}_{r} \end{aligned} ∂r∂q==∂r∂(21ρVr2)=21Vr2∂r∂ρ+ρ∂r∂Vr21Vr2ρrrr+ρωˉE×Vr
cos α = 1 b T 1 V r ⇒ − sin α ∂ α ∂ V = ∂ ( 1 b T 1 V r ) ∂ V ⇒ − sin α ∂ α ∂ V = 1 V r ∂ ( 1 b T V r ) ∂ V + 1 b T V r ∂ 1 V r ∂ V ⇒ ∂ α ∂ V = 1 V r sin α ( cos α 1 V r − 1 b ) \begin{aligned} \cos{\alpha}=\boldsymbol{1}^{T}_{b}\boldsymbol{1}_{Vr} &\Rightarrow -\sin{\alpha}\frac{\partial{\alpha}}{\partial{\boldsymbol{V}}} = \frac{\partial{(\boldsymbol{1}^{T}_{b}\boldsymbol{1}_{Vr})}}{\partial{\boldsymbol{V}}} \\ &\Rightarrow -\sin{\alpha} \frac{\partial{\alpha}}{\partial{\boldsymbol{V}}} = \frac{1}{V_{r}} \frac{\partial{(\boldsymbol{1}^{T}_{b}\boldsymbol{V}_{r})}}{\partial{\boldsymbol{V}}} + \boldsymbol{1}^{T}_{b}\boldsymbol{V}_{r} \frac{\partial \frac{1}{V_{r}}}{\partial\boldsymbol{V}} \\ &\Rightarrow \frac{\partial{\alpha}}{\partial\boldsymbol{V}} = \frac{1}{V_{r}\sin{\alpha}}(\cos{\alpha} \boldsymbol{1}_{Vr} - \boldsymbol{1}_{b}) \end{aligned} cosα=1bT1Vr⇒−sinα∂V∂α=∂V∂(1bT1Vr)⇒−sinα∂V∂α=Vr1∂V∂(1bTVr)+1bTVr∂V∂Vr1⇒∂V∂α=Vrsinα1(cosα1Vr−1b)
∂ α ∂ r = ( ∂ V ∂ r ) T ∂ α ∂ V = ( ω ˉ E × ) T q V r sin α ( cos α 1 V r − 1 b ) \begin{aligned} \frac{\partial\alpha}{\partial\boldsymbol{r}} =& \left(\frac{\partial\boldsymbol{V}}{\partial\boldsymbol{r}}\right)^{T} \frac{\partial\alpha}{\partial\boldsymbol{V}} \\ =& (\bar{\omega}^{\times}_{E})^{T} \frac{q}{V_{r}\sin{\alpha}}(\cos{\alpha} \boldsymbol{1}_{Vr} - \boldsymbol{1}_{b}) \end{aligned} ∂r∂α==(∂r∂V)T∂V∂α(ωˉE×)TVrsinαq(cosα1Vr−1b)
∂ S 1 ∂ r = ∂ ( q α ) ∂ r = α ∂ q ∂ r + q ∂ α ∂ r = 1 2 α ρ r V r 2 r r + α ρ ω ˉ E × V r + ( ω ˉ E × ) T q V r sin α ( cos α 1 V r − 1 b ) \begin{aligned} \frac{\partial S_{1}}{\partial \boldsymbol{r}} =& \frac{\partial (q\alpha)}{\partial \boldsymbol{r}} = \alpha \frac{\partial{q}}{\partial{\boldsymbol{r}}} + q \frac{\partial{\alpha}}{\partial{\boldsymbol{r}}} \\ =&\frac{1}{2} \alpha \rho_{r} V^{2}_{r}\frac{\boldsymbol{r}}{r} + \alpha \rho \bar{\omega}^{\times}_{E} \boldsymbol{V}_{r} + (\bar{\omega}^{\times}_{E})^{T} \frac{q}{V_{r}\sin{\alpha}}(\cos{\alpha} \boldsymbol{1}_{Vr} - \boldsymbol{1}_{b}) \end{aligned} ∂r∂S1==∂r∂(qα)=α∂r∂q+q∂r∂α21αρrVr2rr+αρωˉE×Vr+(ωˉE×)TVrsinαq(cosα1Vr−1b)
∂ S 1 ∂ V = ∂ ( q α ) ∂ V = α ∂ q ∂ V + q ∂ α ∂ V = α ρ V r + q V r sin ( α ) ( cos α 1 V r − 1 b ) \begin{aligned} \frac{\partial S_{1}}{\partial \boldsymbol{V}} =& \frac{\partial (q\alpha)}{\partial \boldsymbol{V}} = \alpha \frac{\partial{q}}{\partial{\boldsymbol{V}}} + q \frac{\partial{\alpha}}{\partial{\boldsymbol{V}}}\\ =& \alpha \rho \boldsymbol{V}_{r} + \frac{q}{V_{r}\sin(\alpha)} (\cos{\alpha} \boldsymbol{1}_{Vr} - \boldsymbol{1}_{b}) \end{aligned} ∂V∂S1==∂V∂(qα)=α∂V∂q+q∂V∂ααρVr+Vrsin(α)q(cosα1Vr−1b)
其中, ρ r = ∂ ρ / ∂ r \rho_{r} = \partial{\rho}/\partial{r} ρr=∂ρ/∂r。
约束 S 2 = T − T m a x ≤ 0 S_{2}=T - T_{max} \leq 0 S2=T−Tmax≤0
当 S 2 = 0 S_{2} = 0 S2=0时,发动机的阀门根据以下公式调节
η = T m a x m ( t ) g 0 / T v a c \eta = T_{max}m(t)g_{0}/T_{vac} η=Tmaxm(t)g0/Tvac
约束 S 3 = q − q m a x ≤ 0 S_{3}=q - q_{max} \leq 0 S3=q−qmax≤0
文章中对约束 S 3 S_{3} S3的处理那块儿,公式有点没弄懂!!当 S 3 = 0 S_{3} = 0 S3=0时,作者将动压约束转化为了对发动机阀门大小 η \eta η的约束,联立以下四个方程[1]
V ′ = − 1 r 3 r + A + T 1 b + N T = η [ T v a c + Δ T ( r ) ] / ( m ( t ) g E ) V r ′ = V ′ − ω ˉ E × V ′ − V w S 3 ′ = ( 1 / ( 2 r ) ) ρ r V r 2 r T V + ρ V r T V r ′ \begin{aligned} \boldsymbol{V}^{\prime} =& -\frac{1}{r^{3}}\boldsymbol{r} + \boldsymbol{A} + T\boldsymbol{1}_{b} + \boldsymbol{N} \\ T = &\eta \left[ T_{vac} + \Delta T(r)\right]/(m(t)g_{E}) \\ \boldsymbol{V}^{\prime}_{r} =& \boldsymbol{V}^{\prime} - \bar{\omega}_{E} \times \boldsymbol{V}^{\prime} - \boldsymbol{V}_{w} \\ S^{\prime}_{3} =& (1/(2r))\rho_{r}V^{2}_{r} \boldsymbol{r}^{T}\boldsymbol{V} + \rho \boldsymbol{V}^{T}_{r}\boldsymbol{V}^{\prime}_{r} \end{aligned} V′=T=Vr′=S3′=−r31r+A+T1b+Nη[Tvac+ΔT(r)]/(m(t)gE)V′−ωˉE×V′−Vw(1/(2r))ρrVr2rTV+ρVrTVr′
可知
q ′ ( t ) = a q ( x , 1 b ) η ( t ) + b q ( x , 1 b ) q^{\prime}(t) = a_{q}(\boldsymbol{x},\boldsymbol{1}_{b})\eta(t) + b_{q}(\boldsymbol{x},\boldsymbol{1}_{b}) q′(t)=aq(x,1b)η(t)+bq(x,1b)
其中
a q ( x , 1 b ) = . . . a_{q}(\boldsymbol{x},\boldsymbol{1}_{b}) = ... aq(x,1b)=...
b q ( x , 1 b ) = . . . b_{q}(\boldsymbol{x},\boldsymbol{1}_{b}) = ... bq(x,1b)=...
另 δ > 0 \delta > 0 δ>0则有
q ( t + δ ) ≈ q ( t ) + q ′ ( t ) δ \begin{aligned} q(t + \delta) \approx q(t) + q^{\prime}(t)\delta \end{aligned} q(t+δ)≈q(t)+q′(t)δ
根据动压约束 q ( t + δ ) − q m a x ≤ 0 q(t + \delta) - q_{max} \leq 0 q(t+δ)−qmax≤0
η ( t ) ≤ q max − q ( t ) − b q δ a q δ ≜ η q \begin{aligned} \eta(t) \leq \frac{q_{\max }-q(t)-b_{q} \delta}{a_{q} \delta} \triangleq \eta_{q} \end{aligned} η(t)≤aqδqmax−q(t)−bqδ≜ηq
将由约束 S 2 S_{2} S2求得的 η \eta η记为 η p r b \eta_{\mathrm{prb}} ηprb, η \eta η的最小值是 η min \eta_{\min } ηmin,那么同时考虑约束2和3, η \eta η的取值方法如下[1]
η = { η p r b , if η q > η p r b η q , if η min ≤ η q ≤ η p r b η m i n , if η q < η min \begin{aligned} \eta = \left \{ \begin{array}{lll} {\eta_{\mathrm{prb}},} & {\text { if }} & {\eta_{q}>\eta_{\mathrm{prb}}} \\ {\eta_{q},} & {\text { if }} & {\eta_{\min } \leq \eta_{q} \leq \eta_{\mathrm{prb}}}\\ {\eta_{\mathrm{min}},} & {\text { if }} & {\eta_{q}<\eta_{\min }}\end{array}\right. \end{aligned} η=⎩⎨⎧ηprb,ηq,ηmin, if if if ηq>ηprbηmin≤ηq≤ηprbηq<ηmin
密度
已知是空气密度是关于运载器所在高度的函数,即 ρ 1 = f ( h 1 ) \rho_{1} = f(h_{1}) ρ1=f(h1)
ρ r = ∂ ρ ∂ r = ∂ ρ ∂ ( 1 + h ) = ∂ ρ ∂ h (归一化方程) \begin{aligned} \rho_r = \frac{\partial \rho}{\partial r} =& \frac{\partial \rho}{\partial(1 + h)} = \frac{\partial \rho}{\partial h} \end{aligned}\quad \text{(归一化方程)} ρr=∂r∂ρ=∂(1+h)∂ρ=∂h∂ρ(归一化方程)
未归一化密度 ρ 1 = ρ 0 ρ \rho_{1} = \rho_{0}\rho ρ1=ρ0ρ,单位 k g / m 3 kg/m^{3} kg/m3,未归一化运载器高度 h 1 = R 0 h / 1000 h_{1} = R_{0}h / 1000 h1=R0h/1000,单位 k m km km
ρ r = R 0 1000 ρ 0 ∂ ρ 1 ∂ h 1 \begin{aligned} \rho_{r} = \frac{R_{0}}{1000\rho_{0}} \frac{\partial \rho_{1}}{\partial h_{1}} \end{aligned} ρr=1000ρ0R0∂h1∂ρ1
声速
声速是关于运载器所在高度的函数,即 V s 1 = f ( h 1 ) V_{s1} = f(h_{1}) Vs1=f(h1),此 f ( h ) f(h) f(h)非计算密度的 f ( h ) f(h) f(h)。未归一化声速 V s 1 = R 0 g E V s V_{s1} = \sqrt{R_{0}g_{E}} V_{s} Vs1=R0gEVs,单位 m / s m/s m/s,未归一化运载器高度 h 1 = R 0 h / 1000 h_{1} = R_{0}h / 1000 h1=R0h/1000,单位 k m km km
∂ V s ∂ r = R 0 1000 R 0 g E ∂ V s 1 ∂ h 1 \begin{aligned} \frac{\partial V_{s}}{\partial r} = \frac{R_{0}}{1000\sqrt{R_{0}g_{E}}}\frac{\partial V_{s1}}{\partial h_{1}} \end{aligned} ∂r∂Vs=1000R0gER0∂h1∂Vs1
推力
文献中计算推力的公式 T = η [ T v a c + Δ T ( r ) ] / ( m ( t ) g 0 ) T = \eta[T_{vac} + \Delta T(r)] / (m(t)g_{0}) T=η[Tvac+ΔT(r)]/(m(t)g0),其中 Δ T ( r ) \Delta T(r) ΔT(r)怎么求呢?由文献[4]可知,在弹道计算中,通常采用下式计算推力
P = P 0 + S e ( p 0 − p H ) P = P_{0} + S_{e}(p_{0}-p_{H}) P=P0+Se(p0−pH)
其中, P P P是发动机推力, P 0 P_{0} P0是发动机地面推力, S e S_{e} Se是喷口载面积, p 0 p_{0} p0是地面大气压, p H p_{H} pH是发动机所在高度大气压。因此 Δ T ( r ) = − S e p H \Delta T(r) = -S_{e}p_{H} ΔT(r)=−SepH,进而可得
T r = ∂ T ∂ r = − η S e m ( t ) g E ∂ p H ∂ r T_{r} = \frac{\partial{T}}{\partial{r}} = -\frac{\eta S_{e}}{m(t)g_{E}} \frac{\partial p_{H}}{\partial{r}} Tr=∂r∂T=−m(t)gEηSe∂r∂pH
在求 Y 0 Y_{0} Y0过程中,我们已经求出一条满足终端约束的上升轨迹,根据该过程中求得的各量,求解 1 b ∗ \boldsymbol{1}^{*}_{b} 1b∗
计算 Φ \Phi Φ
根据以下公式可以求解 Φ \Phi Φ的绝对值[1]
Φ = 1 p V T 1 V r \Phi=\mathbf{1}_{p_{V}}^{T} \mathbf{1}_{V_{r}} Φ=1pVT1Vr
再根据文章中的方法确定 Φ \Phi Φ的正负。
用牛顿迭代法求解 α \alpha α
∂ H / ∂ α = 0 \partial{H}/\partial{\alpha} = 0 ∂H/∂α=0可求得下式[1]
tan ( Φ − α ) ( T − A + N α ) − ( A α + N ) = 0 \tan (\Phi-\alpha)\left(T-A+N_{\alpha}\right)-\left(A_{\alpha}+N\right)=0 tan(Φ−α)(T−A+Nα)−(Aα+N)=0
要使用牛顿迭代法求解 α \alpha α还需求解 ∂ 2 H / ∂ α 2 {\partial^{2}H}/\partial{\alpha^{2}} ∂2H/∂α2
∂ 2 H ∂ α 2 = A − T − N α cos 2 ( Φ − α ) + tan ( Φ − α ) ( − A α + N α α ) − ( A α α + N α ) \frac{\partial^{2}H}{\partial{\alpha^{2}}} = \frac{A-T-N_{\alpha}}{\cos^{2}{(\Phi - \alpha)}} + \tan{(\Phi - \alpha)}(-A_{\alpha}+N_{\alpha\alpha}) - (A_{\alpha\alpha} + N_{\alpha}) ∂α2∂2H=cos2(Φ−α)A−T−Nα+tan(Φ−α)(−Aα+Nαα)−(Aαα+Nα)
其中, A α α = ∂ 2 A / ∂ α 2 , N α α = ∂ 2 N / ∂ α 2 A_{\alpha\alpha}={\partial^{2}A}/\partial{\alpha^{2}},N_{\alpha\alpha}={\partial^{2}N}/\partial{\alpha^{2}} Aαα=∂2A/∂α2,Nαα=∂2N/∂α2。仿真时,气动力 A A A和 N N N被拟合成攻角 α \alpha α的二次多项式形式,很容易求得气动力对攻角的一阶和二阶偏导数。求得 α \alpha α后,根据下式求解最优体轴矢量[1]
1 b ∗ = ( sin α sin Φ ) 1 p V + [ cos α − cos Φ cos ( Φ − α ) sin 2 Φ ] 1 V r \mathbf{1}_{b}^{*}=\left(\frac{\sin \alpha}{\sin \Phi}\right) \mathbf{1}_{p_{V}}+\left[\frac{\cos \alpha-\cos \Phi \cos (\Phi-\alpha)}{\sin ^{2} \Phi}\right] \mathbf{1}_{V_{r}} 1b∗=(sinΦsinα)1pV+[sin2Φcosα−cosΦcos(Φ−α)]1Vr
两点边值问题中的动力学方程由运载器的动力学方程和协态变量微分方程组成[1]
r ′ = V V ′ = − 1 r 3 r + A + T 1 b + N \begin{aligned} \boldsymbol{r}^{\prime} =& \boldsymbol{V} \\ \boldsymbol{V}^{\prime} = -\frac{1}{r^{3}}\boldsymbol{r} + \boldsymbol{A} &+ T\boldsymbol{1}_{b} + \boldsymbol{N} \\ \end{aligned} r′=V′=−r31r+AV+T1b+N
p r ′ = 1 r 3 p V − [ 3 a p v b r 4 − a p v n ( T r − A ρ r + 1 2 V r C ρ V s 2 C A M a c h ∂ V s ∂ r ) + a p v n ( N ρ r − 1 2 V r C ρ V s 2 C N M a c h ∂ V s ∂ r ) ] r r + C ρ ω ˉ E × { a p v b [ ( C A + 1 2 V r V s C A M a c h ) V r + 1 2 C A α V r 2 ∂ α ∂ V ] − a p v n [ ( C N + 1 2 V r V s C N M a c h ) V r + 1 2 C N α V r 2 ∂ α ∂ V ] } p V ′ = − p r + C ρ [ a p v b ( C A + 1 2 V r V s C A M a c h ) − a p v n ( C N + 1 2 V r V s C N M a c h ) + 1 2 ( a p v b C A α − a p v n C N α ) cos α sin α ] × V r − C ρ V r 2 sin α ( a p v b C A α − a p v n C N α ) 1 b \begin{aligned} \boldsymbol{p}^{\prime}_{r} =& \frac{1}{r^{3}}\boldsymbol{p}_{V} - \lbrack \frac{3a_{pvb}}{r^{4}} -a_{pvn} ( T_{r}-A_{\rho r} + \frac{1}{2V_{r}}C_{\rho}V^{2}_{s}C_{A_{Mach}}\frac{\partial V_{s}}{\partial r} ) \\ &+ a_{pvn}(N_{\rho r} - \frac{1}{2V_{r}}C_{\rho}V^{2}_{s}C_{N_{Mach}}\frac{\partial V_{s}}{\partial r})]\frac{\boldsymbol{r}}{r} \\ &+ C_{\rho}\bar{\omega}_{E} \times \{ a_{pvb} [(C_{A} + \frac{1}{2V_{r}}V_{s}C_{A_{Mach}}) \boldsymbol{V}_{r} + \frac{1}{2}C_{A_{\alpha}}V^{2}_{r} \frac{\partial \alpha}{\partial \boldsymbol{V}} ] \\ &- a_{pvn}[(C_{N} + \frac{1}{2V_{r}}V_{s}C_{N_{Mach}}) \boldsymbol{V}_{r} + \frac{1}{2}C_{N_{\alpha}}V^{2}_{r} \frac{\partial \alpha}{\partial \boldsymbol{V}} ] \} \\ \boldsymbol{p}^{\prime}_{V} =& -\boldsymbol{p}_{r} + C_{\rho}[a_{pvb}(C_{A} + \frac{1}{2V_{r}}V_{s}C_{A_{Mach}}) \\ &- a_{pvn}(C_{N} + \frac{1}{2V_{r}}V_{s}C_{N_{Mach}}) + \frac{1}{2}(a_{pvb}C_{A_{\alpha}} - a_{pvn}C_{N_{\alpha}})\frac{\cos{\alpha}}{\sin{\alpha}}] \\ & \times \boldsymbol{V}_{r} - \frac{C_{\rho}V_{r}}{2\sin{\alpha}}(a_{pvb}C_{A_{\alpha}} - a_{pvn}C_{N_{\alpha}})\boldsymbol{1}_{b} \end{aligned} pr′=pV′=r31pV−[r43apvb−apvn(Tr−Aρr+2Vr1CρVs2CAMach∂r∂Vs)+apvn(Nρr−2Vr1CρVs2CNMach∂r∂Vs)]rr+CρωˉE×{apvb[(CA+2Vr1VsCAMach)Vr+21CAαVr2∂V∂α]−apvn[(CN+2Vr1VsCNMach)Vr+21CNαVr2∂V∂α]}−pr+Cρ[apvb(CA+2Vr1VsCAMach)−apvn(CN+2Vr1VsCNMach)+21(apvbCAα−apvnCNα)sinαcosα]×Vr−2sinαCρVr(apvbCAα−apvnCNα)1b
其中, ρ r = ∂ ρ / ∂ r , T r = ∂ T / ∂ r , C ρ = ρ 0 ρ S r e f R 0 / m ( t ) \rho_{r}=\partial\rho/\partial r, T_{r}=\partial T/\partial r, C_{\rho}=\rho_{0}\rho S_{ref}R_{0}/m(t) ρr=∂ρ/∂r,Tr=∂T/∂r,Cρ=ρ0ρSrefR0/m(t),并且有
A ρ r = V r 2 S r e f R 0 ρ 0 C A ρ r 2 m ( t ) , N ρ r = V r 2 S r e f R 0 ρ 0 C N ρ r 2 m ( t ) A_{\rho r} = \frac{V^2_{r}S_{ref}R_{0}\rho_{0}C_{A}\rho_{r}}{2m(t)}, N_{\rho r} = \frac{V^2_{r}S_{ref}R_{0}\rho_{0}C_{N}\rho_{r}}{2m(t)} Aρr=2m(t)Vr2SrefR0ρ0CAρr,Nρr=2m(t)Vr2SrefR0ρ0CNρr
C A α = ∂ C A ∂ α , C N α = ∂ C N ∂ α , C A M a c h = ∂ C A ∂ M a c h C_{A_{\alpha}} = \frac{\partial C_{A}}{\partial \alpha}, C_{N_{\alpha}} = \frac{\partial C_{N}}{\partial \alpha}, C_{A_{Mach}} = \frac{\partial C_{A}}{\partial Mach} CAα=∂α∂CA,CNα=∂α∂CN,CAMach=∂Mach∂CA
C N M a c h = ∂ C N ∂ M a c h , a p v b = p V T 1 b = p V cos ( Φ − α ) C_{N_{Mach}} = \frac{\partial C_{N}}{\partial Mach}, a_{pvb} = \boldsymbol{p}^{T}_{V}\boldsymbol{1}_{b} = p_{V}\cos{(\Phi - \alpha)} CNMach