- 深度学习理论基础(七)Transformer编码器和解码器
小仇学长
深度学习深度学习transformer人工智能编码器解码器
学习目录:深度学习理论基础(一)Python及Torch基础篇深度学习理论基础(二)深度神经网络DNN深度学习理论基础(三)封装数据集及手写数字识别深度学习理论基础(四)Parser命令行参数模块深度学习理论基础(五)卷积神经网络CNN深度学习理论基础(六)Transformer多头自注意力机制深度学习理论基础(七)Transformer编码器和解码器本文目录学习目录:前述:Transformer
- K210视觉识别模块
LS_learner
嵌入式嵌入式硬件
K210视觉识别模块是一款功能强大的AI视觉模块,以下是对其的详细介绍:一、核心特性强大的视觉识别功能:K210视觉识别模块支持多种视觉功能,包括但不限于人脸识别、口罩识别、条形码和二维码识别、特征检测、数字识别、颜色识别、路标识别和视觉巡线等。这些功能使得K210视觉识别模块在多个领域都有广泛的应用潜力。高性能的硬件支持:K210视觉识别模块基于RISC-V精简指令集的K210芯片设计,该芯片内
- 【机器学习:十五、神经网络的编译和训练】
KeyPan
机器学习机器学习神经网络人工智能深度学习pytorchubuntulinux
1.TensorFlow实现代码TensorFlow是深度学习中最为广泛使用的框架之一,提供了灵活的接口来构建、编译和训练神经网络。以下是实现神经网络的一个完整代码示例,以“手写数字识别”为例:importtensorflowastffromtensorflow.kerasimportlayers,models#加载MNIST数据集(x_train,y_train),(x_test,y_test)
- 【3.6 python中的numpy编写一个“手写数字识”的神经网络】
wang151038606
深度学习入门pythonnumpy神经网络
3.6python中的numpy编写一个“手写数字识”的神经网络要使用Python中的NumPy库从头开始编写一个“手写数字识别”的神经网络,我们通常会处理MNIST数据集,这是一个广泛使用的包含手写数字的图像数据集。但是,完全用NumPy来实现神经网络(包括数据的加载、预处理、模型定义、前向传播、损失计算、反向传播和权重更新)是一个相当复杂的任务,因为NumPy本身不提供自动微分或高级优化算法(
- 深度学习入门篇:PyTorch实现手写数字识别
AI_Guru人工智能
深度学习pytorch人工智能
深度学习作为机器学习的一个分支,近年来在图像识别、自然语言处理等领域取得了显著的成就。在众多的深度学习框架中,PyTorch以其动态计算图、易用性强和灵活度高等特点,受到了广泛的喜爱。本篇文章将带领大家使用PyTorch框架,实现一个手写数字识别的基础模型。手写数字识别简介手写数字识别是计算机视觉领域的一个经典问题,目的是让计算机能够识别并理解手写数字图像。这个问题通常作为深度学习入门的练习,因为
- 【ShuQiHere】用类来实现LSTM:让你的模型拥有更强的记忆力
ShuQiHere
代码武士的机器学习秘传lstm人工智能
【ShuQiHere】欢迎回到ShuQiHere!今天我们要来聊一聊LSTM(LongShort-TermMemory),一种非常流行的循环神经网络(RNN)变种。LSTM以其卓越的记忆能力和处理长序列数据的强大性能而闻名。今天,我们将用类的方式来实现LSTM,并将其应用于手写数字识别任务中。1.什么是LSTM?LSTM是一种特殊的RNN,它通过引入“门”的机制,能够更好地捕捉长时间跨度的依赖关系
- 【ShuQiHere】卷积神经网络(CNN):从输入到输出的逐层解析
ShuQiHere
cnn人工智能神经网络
【ShuQiHere】卷积神经网络(ConvolutionalNeuralNetwork,CNN)是深度学习领域的一个里程碑。它的出现不仅改变了计算机视觉的格局,还影响了各类数据处理任务,如语音识别和自然语言处理。随着深度学习的蓬勃发展,CNN成为了图像处理任务中的标准工具。那么,CNN到底是什么?它又是如何工作的?在本文中,我们将通过手写数字识别的例子,逐层解析CNN的每个部分,帮助你全面理解这
- 百度飞桨教程(一)
怎么这么多名字都被占了
百度paddlepaddle人工智能
百度飞桨(paddle),是一个开源的深度学习平台百度飞桨的安装pipinstallpaddlepaddle-ihttps://mirror.baidu.com/pypi/simple手写数字识别案例我们来通过一个案例,大概了解paddle的使用importpaddleimportnumpyasnpfrompaddle.vision.transformsimportNormalizetransfo
- 24.8.19学习笔记(MNIST,)
kkkkk021106
学习笔记
pytorchMNIST手写数字识别:importtorchimporttorch.nnasnnimporttorch.optimasoptimfromtorchvisionimportdatasets,transforms#设定随机种子以保证结果可复现torch.manual_seed(0)#定义超参数batch_size=32learning_rate=0.001num_epochs=10#1
- 计算机设计大赛 题目:基于卷积神经网络的手写字符识别 - 深度学习
iuerfee
python
文章目录0前言1简介2LeNet-5模型的介绍2.1结构解析2.2C1层2.3S2层S2层和C3层连接2.4F6与C5层3写数字识别算法模型的构建3.1输入层设计3.2激活函数的选取3.3卷积层设计3.4降采样层3.5输出层设计4网络模型的总体结构5部分实现代码6在线手写识别7最后0前言优质竞赛项目系列,今天要分享的是基于卷积神经网络的手写字符识别该项目较为新颖,适合作为竞赛课题方向,学长非常推荐
- 使用Keras和tensorfow,CNN手写数字识别
smallcui
查看数据fromtensorflow.keras.datasetsimportmnistimportmatplotlib.pyplotasplt(train_x,train_y),(test_x,test_Y)=mnist.load_data()plt.figure(figsize=(10,10))foriinrange(25):plt.subplot(5,5,i+1)plt.xticks([])
- 深度学习之手写数字识别
JavaGPT
深度学习python神经网络卷积深度学习tensorflow人工智能
深度学习之手写数字识别1、安装库各位小伙伴们,大家好,今天就让我们一起来看一下使用python实现深度学习中的手写数字识别,首先咱们需要安装几个库文件,numpy库、matplotlib库和tensorflow库。可以打开命令行进行安装,也可以再PyCharm下的命令行安装,建议在PyCharm下的命令行进行安装,因为我有许多同学在cmd控制台安装的时候,会报许多的错误。其实在PyCharm中安装
- 全连接神经网络实现手写数字识别
zeronose
codetips深度学习机器学习
可能我的学弟学妹们会搜到这篇文章,此时的你们正在为作业发愁,哈哈其他实现手写数字识别的方法:1.聚类(K-means)实现手写数字识别2.KNN实现手写数字识别3.卷积神经网络(CNN)实现手写数字识别4.聚类(K-means)实现手写数字识别-2实验数据是老师收集了所有人的手写数字图片,且经过处理将图像生成了.txt文件,如何生成点击这,如下图2.代码实现fromkeras.utilsimpor
- 基于卷积神经网络模型的手写数字识别
Jc.MJ
课程设计Pythoncnn人工智能神经网络深度学习
基于卷积神经网络模型的手写数字识别一.前言二.设计目的及任务描述2.1设计目的2.2设计任务三.神经网络模型3.1卷积神经网络模型方案3.2卷积神经网络模型训练过程3.3卷积神经网络模型测试四.程序设计一.前言手写数字识别要求利用MNIST数据集里的70000张手写体数字的图像,建立神经网络模型,进行0到9的分类,并能够对其他来源的图片进行识别,识别准确率大于97%。图片示例如下。图1-1mnis
- 基于神经网络实现手写数字识别(matlab)
入门小新手
神经网络matlab机器学习
实验目的在matlab平台上,采用神经网络实现手写数字识别。在实验过程中:1、初步探讨数据集预处理的作用。2、增加对神经网络的理解,探讨隐含层层数,节点数和训练步长对识别成功率的影响,找到较佳的参数。3、应用交叉验证法评估训练模型的优劣,建立多次实验取均值的严谨思维。二、分类器原理阐述1、前向传播:输入样本从输入层传入,经隐层逐层处理后,传到输出层,计算实际输出和期望输出的误差。2、误差反向传播:
- 基于全连接神经网络模型的手写数字识别
Jc.MJ
课程设计Python神经网络人工智能深度学习
基于全连接神经网络模型的手写数字识别一.前言二.设计目的及任务描述2.1设计目的2.2设计任务三.神经网络模型3.1全连接神经网络模型方案3.2全连接神经网络模型训练过程3.3全连接神经网络模型测试四.程序设计一.前言手写数字识别要求利用MNIST数据集里的70000张手写体数字的图像,建立神经网络模型,进行0到9的分类,并能够对其他来源的图片进行识别,识别准确率大于97%。图片示例如下。图1.1
- AI嵌入式K210项目(28)-在线模型训练
疯狂飙车的蜗牛
K210开发板人工智能嵌入式AIAI嵌入式K210K230模型训练
文章目录前言一、平台介绍二、创建项目三、上传数据集图像分类图像检测图片上传压缩包上传四、新建任务总结前言前面我们使用已经训练好的模型在K210开发板上进行了人脸识别,口罩识别,手写数字识别等实验,那么模型除了使用已经训练好的,如何根据自己的需求,获得相应的模型那?本章我们来介绍下如何使用嘉楠科技提供的在线模型训练工具;一、平台介绍嘉楠科技开发者社区(https://developer.canaan
- 【深度学习】:Softmax实现手写数字识别
X.AI666
深度学习深度学习人工智能
清华大学驭风计划课程链接学堂在线-精品在线课程学习平台(xuetangx.com)代码和报告均为本人自己实现(实验满分),只展示任务实验结果,如果需要报告或者代码可以私聊博主有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~Softmax实现手写数字识别相关知识点:numpy科学计算包,如向量化操作,广播机制等1简介本次案例中,你需要用python实现Softmax回归方法,用于MNI
- 【深度学习】: MNIST手写数字识别
X.AI666
深度学习深度学习人工智能机器学习
清华大学驭风计划课程链接学堂在线-精品在线课程学习平台(xuetangx.com)代码和报告均为本人自己实现(实验满分),只展示主要任务实验结果,如果需要详细的实验报告或者代码可以私聊博主,可接实验指导1对1有任何疑问或者问题,也欢迎私信博主,大家可以相互讨论交流哟~~案例2:构建自己的多层感知机:MNIST手写数字识别相关知识点:numpy科学计算包,如向量化操作,广播机制等1数据集简介MNIS
- day04-05:Cmake与Torch c++实现数字识别
鸢北_yuanbei
环境:window10visualstudio2019(nmake/cl/link/lib/dumpbin)Qt5.14.0(designer/uic/moc)OpenCV4.2.0TorchC++1.5.1cmake注意事项:编译/链接的环境(编译/链接的命令行设置):Makefile/CMake/QMakeincludelib运行环境:(设置PATH/或者拷贝到当前路径/或者拷贝到window
- 机器学习 | 一文看懂SVM算法从原理到实现全解析
亦世凡华、
#机器学习支持向量机机器学习算法svm经验分享
目录初识SVM算法SVM算法原理SVM损失函数SVM的核方法数字识别器(实操)初识SVM算法支持向量机(SupportVectorMachine,SVM)是一种经典的监督学习算法,用于解决二分类和多分类问题。其核心思想是通过在特征空间中找到一个最优的超平面来进行分类,并且间隔最大。SVM能够执行线性或非线性分类、回归,甚至是异常值检测任务。它是机器学习领域最受欢迎的模型之一。SVM特别适用于中小型
- 【深度学习】Softmax实现手写数字识别
住在天上的云
深度学习深度学习人工智能Softmax手写数字识别驭风计划
实训1:Softmax实现手写数字识别相关知识点:numpy科学计算包,如向量化操作,广播机制等1任务目标1.1简介本次案例中,你需要用python实现Softmax回归方法,用于MNIST手写数字数据集分类任务。你需要完成前向计算loss和参数更新。你需要首先实现Softmax函数和交叉熵损失函数的计算。y=softmax(WTx+b)L=CrossEntropy(y,label)y=softm
- 基于CNN卷积网络的MNIST手写数字识别matlab仿真,CNN编程实现不使用matlab工具箱
简简单单做算法
MATLAB算法开发#深度学习cnnmatlab人工智能CNN卷积网络MNIST手写数字识别matlab仿真
目录1.算法运行效果图预览2.算法运行软件版本3.部分核心程序4.算法理论概述4.1卷积神经网络(CNN)4.2损失函数和优化5.算法完整程序工程1.算法运行效果图预览2.算法运行软件版本matlab2022a3.部分核心程序...............................................................%输入图片input_layers=reshap
- 人工智能专业毕业设计最新最全选题精华汇总-持续更新中
HaiLang_IT
毕业设计开题指导毕业设计选题毕设选题教程人工智能毕业设计选题深度学习卷积神经网络计算机视觉机器学习
大四是整个大学期间最忙碌的时光,一边要忙着准备考研、考公、考教资或者实习为毕业后面临的升学就业做准备,一边要为毕业设计耗费大量精力。学长给大家整理了人工智能专业方向最新精选选题,如遇选题困难或选题有任何疑问,都可以问学长哦(见文末)!目录开题指导建议更多精选选题选题指导最后基于机器学习的手写数字识别系统设计基于深度学习的图像分类算法研究基于卷积神经网络的人脸识别系统设计基于自然语言处理的情感分析算
- 深度学习实战 | 卷积神经网络LeNet手写数字识别(带手写板GUI界面)
两只程序猿
深度学习实战深度学习cnn人工智能
引言在深度学习领域,卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种广泛应用于图像识别任务的神经网络结构。LeNet是一种经典的CNN结构,被广泛应用于基础的图像分类任务。本文将介绍如何使用LeNet卷积神经网络实现手写数字识别,并使用Pytorch实现LeNet手写数字识别,使用PyQt5实现手写板GUI界面,使用户能够通过手写板输入数字并进行识别。完整代码下载
- 基于决策树模型和支持向量机模型的手写数字识别
派大星先生c
简单好玩的实战项目算法人工智能
目录1、导入库和手写数字数据集2、把数据可视化3、把数据分成训练数据集和测试数据集4、训练SVM模型5、训练决策树模型6、对所使用的模型进行评估7、对手写数字图像进行预测本项目实现了第一个功能:可以通过导入库和数据集、通过对数据集的预处理、读取、可视化,将数据集划分为训练集和测试级,更换不同的模型,并对模型进行评估,多方面对比不同的机器学习方法,对数据模型的影响。第二个功能:将训练出来的数据进行预
- 深度学习之图像分类
kadog
深度学习人工智能计算机视觉神经网络生成对抗网络cnn
深度学习对于图像分类来说已经斩获了显著的成果,无论是识别日常生活中的物体还是识别疾病肺部CT扫描中的异常病变,深度学习在图像分类中的应用都已经相当广泛。下面回顾一下深度学习在图像分类上的发展历程:LeNet-5在1998年,YannLeCun等人设计的第一个卷积神经网络(CNN)模型LeNet-5,为图像分类领域打开了一个新的门。主要应用在手写和机器印刷字符的识别,是数字识别领域的重大突破。Ale
- 基于stm32F4卷积神经网络手写数字识别项目
周南音频科技教育学院(AI湖湘学派)
AI深度学习理论与实践研究神经网络音频人工智能算法
加我微信hezkz17可以申请加入嵌入式人工智能技术研究开发交流答疑群,赠送企业嵌入式AI图像理解/音/视频项目核心开发资料1采用CNNBP反向传播算法更新权重系数2原理解析3实现策略训练与识别分离,先在电脑上训练好CNNBP神经网络的模型,然后再移植到stm32单片机上
- 手写数字识别从训练到部署全流程详解——模型在Android端的部署
彧侠
综述:目前深度学习模型在移动端的使用已越来越广泛,而移动端设备的性能表现自然无法与PC端相提并论,目前市面上基本所有的训练框架训练出来的模型都无法直接在移动端上使用和推理,尽管部分框架同时做了移动端部署功能(如Tensorflow-lite、pytorch-mobile等),但是在性能表现上对比专业的部署框架(如ncnn、mnn等)没有任何优势,基于之前对部署框架的使用经验,下面我就以手写数字识别
- 项目实战(一)信用卡数字识别个人学习笔记(初学超详细注释)
菜鸟一号0.0
学习笔记pythonopencv
初次学习此项目实战,偏向初学小白使用。目录一、myutils.py文件解释二、ocr_template_match.py解释1.导入库并设置参数2.处理0-9数字模板3.预处理信用卡图像4.按组绘制轮廓5.模型匹配得到最终结果开始之前贴一下配置的CPU版本的pytorch环境:一、myutils.py文件解释首先看myutils.py文件中内容,其自定义了sort_contours和resize两
- 解线性方程组
qiuwanchi
package gaodai.matrix;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
public class Test {
public static void main(String[] args) {
Scanner scanner = new Sc
- 在mysql内部存储代码
annan211
性能mysql存储过程触发器
在mysql内部存储代码
在mysql内部存储代码,既有优点也有缺点,而且有人倡导有人反对。
先看优点:
1 她在服务器内部执行,离数据最近,另外在服务器上执行还可以节省带宽和网络延迟。
2 这是一种代码重用。可以方便的统一业务规则,保证某些行为的一致性,所以也可以提供一定的安全性。
3 可以简化代码的维护和版本更新。
4 可以帮助提升安全,比如提供更细
- Android使用Asynchronous Http Client完成登录保存cookie的问题
hotsunshine
android
Asynchronous Http Client是android中非常好的异步请求工具
除了异步之外还有很多封装比如json的处理,cookie的处理
引用
Persistent Cookie Storage with PersistentCookieStore
This library also includes a PersistentCookieStore whi
- java面试题
Array_06
java面试
java面试题
第一,谈谈final, finally, finalize的区别。
final-修饰符(关键字)如果一个类被声明为final,意味着它不能再派生出新的子类,不能作为父类被继承。因此一个类不能既被声明为 abstract的,又被声明为final的。将变量或方法声明为final,可以保证它们在使用中不被改变。被声明为final的变量必须在声明时给定初值,而在以后的引用中只能
- 网站加速
oloz
网站加速
前序:本人菜鸟,此文研究总结来源于互联网上的资料,大牛请勿喷!本人虚心学习,多指教.
1、减小网页体积的大小,尽量采用div+css模式,尽量避免复杂的页面结构,能简约就简约。
2、采用Gzip对网页进行压缩;
GZIP最早由Jean-loup Gailly和Mark Adler创建,用于UNⅨ系统的文件压缩。我们在Linux中经常会用到后缀为.gz
- 正确书写单例模式
随意而生
java 设计模式 单例
单例模式算是设计模式中最容易理解,也是最容易手写代码的模式了吧。但是其中的坑却不少,所以也常作为面试题来考。本文主要对几种单例写法的整理,并分析其优缺点。很多都是一些老生常谈的问题,但如果你不知道如何创建一个线程安全的单例,不知道什么是双检锁,那这篇文章可能会帮助到你。
懒汉式,线程不安全
当被问到要实现一个单例模式时,很多人的第一反应是写出如下的代码,包括教科书上也是这样
- 单例模式
香水浓
java
懒汉 调用getInstance方法时实例化
public class Singleton {
private static Singleton instance;
private Singleton() {}
public static synchronized Singleton getInstance() {
if(null == ins
- 安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
AdyZhang
apachehttp server
安装Apache问题:系统找不到指定的文件 No installed service named "Apache2"
每次到这一步都很小心防它的端口冲突问题,结果,特意留出来的80端口就是不能用,烦。
解决方法确保几处:
1、停止IIS启动
2、把端口80改成其它 (譬如90,800,,,什么数字都好)
3、防火墙(关掉试试)
在运行处输入 cmd 回车,转到apa
- 如何在android 文件选择器中选择多个图片或者视频?
aijuans
android
我的android app有这样的需求,在进行照片和视频上传的时候,需要一次性的从照片/视频库选择多条进行上传
但是android原生态的sdk中,只能一个一个的进行选择和上传。
我想知道是否有其他的android上传库可以解决这个问题,提供一个多选的功能,可以使checkbox之类的,一次选择多个 处理方法
官方的图片选择器(但是不支持所有版本的androi,只支持API Level
- mysql中查询生日提醒的日期相关的sql
baalwolf
mysql
SELECT sysid,user_name,birthday,listid,userhead_50,CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')),CURDATE(), dayofyear( CONCAT(YEAR(CURDATE()),DATE_FORMAT(birthday,'-%m-%d')))-dayofyear(
- MongoDB索引文件破坏后导致查询错误的问题
BigBird2012
mongodb
问题描述:
MongoDB在非正常情况下关闭时,可能会导致索引文件破坏,造成数据在更新时没有反映到索引上。
解决方案:
使用脚本,重建MongoDB所有表的索引。
var names = db.getCollectionNames();
for( var i in names ){
var name = names[i];
print(name);
- Javascript Promise
bijian1013
JavaScriptPromise
Parse JavaScript SDK现在提供了支持大多数异步方法的兼容jquery的Promises模式,那么这意味着什么呢,读完下文你就了解了。
一.认识Promises
“Promises”代表着在javascript程序里下一个伟大的范式,但是理解他们为什么如此伟大不是件简
- [Zookeeper学习笔记九]Zookeeper源代码分析之Zookeeper构造过程
bit1129
zookeeper
Zookeeper重载了几个构造函数,其中构造者可以提供参数最多,可定制性最多的构造函数是
public ZooKeeper(String connectString, int sessionTimeout, Watcher watcher, long sessionId, byte[] sessionPasswd, boolea
- 【Java命令三】jstack
bit1129
jstack
jstack是用于获得当前运行的Java程序所有的线程的运行情况(thread dump),不同于jmap用于获得memory dump
[hadoop@hadoop sbin]$ jstack
Usage:
jstack [-l] <pid>
(to connect to running process)
jstack -F
- jboss 5.1启停脚本 动静分离部署
ronin47
以前启动jboss,往各种xml配置文件,现只要运行一句脚本即可。start nohup sh /**/run.sh -c servicename -b ip -g clustername -u broatcast jboss.messaging.ServerPeerID=int -Djboss.service.binding.set=p
- UI之如何打磨设计能力?
brotherlamp
UIui教程ui自学ui资料ui视频
在越来越拥挤的初创企业世界里,视觉设计的重要性往往可以与杀手级用户体验比肩。在许多情况下,尤其对于 Web 初创企业而言,这两者都是不可或缺的。前不久我们在《右脑革命:别学编程了,学艺术吧》中也曾发出过重视设计的呼吁。如何才能提高初创企业的设计能力呢?以下是 9 位创始人的体会。
1.找到自己的方式
如果你是设计师,要想提高技能可以去设计博客和展示好设计的网站如D-lists或
- 三色旗算法
bylijinnan
java算法
import java.util.Arrays;
/**
问题:
假设有一条绳子,上面有红、白、蓝三种颜色的旗子,起初绳子上的旗子颜色并没有顺序,
您希望将之分类,并排列为蓝、白、红的顺序,要如何移动次数才会最少,注意您只能在绳
子上进行这个动作,而且一次只能调换两个旗子。
网上的解法大多类似:
在一条绳子上移动,在程式中也就意味只能使用一个阵列,而不使用其它的阵列来
- 警告:No configuration found for the specified action: \'s
chiangfai
configuration
1.index.jsp页面form标签未指定namespace属性。
<!--index.jsp代码-->
<%@taglib prefix="s" uri="/struts-tags"%>
...
<s:form action="submit" method="post"&g
- redis -- hash_max_zipmap_entries设置过大有问题
chenchao051
redishash
使用redis时为了使用hash追求更高的内存使用率,我们一般都用hash结构,并且有时候会把hash_max_zipmap_entries这个值设置的很大,很多资料也推荐设置到1000,默认设置为了512,但是这里有个坑
#define ZIPMAP_BIGLEN 254
#define ZIPMAP_END 255
/* Return th
- select into outfile access deny问题
daizj
mysqltxt导出数据到文件
本文转自:http://hatemysql.com/2010/06/29/select-into-outfile-access-deny%E9%97%AE%E9%A2%98/
为应用建立了rnd的帐号,专门为他们查询线上数据库用的,当然,只有他们上了生产网络以后才能连上数据库,安全方面我们还是很注意的,呵呵。
授权的语句如下:
grant select on armory.* to rn
- phpexcel导出excel表简单入门示例
dcj3sjt126com
PHPExcelphpexcel
<?php
error_reporting(E_ALL);
ini_set('display_errors', TRUE);
ini_set('display_startup_errors', TRUE);
if (PHP_SAPI == 'cli')
die('This example should only be run from a Web Brows
- 美国电影超短200句
dcj3sjt126com
电影
1. I see. 我明白了。2. I quit! 我不干了!3. Let go! 放手!4. Me too. 我也是。5. My god! 天哪!6. No way! 不行!7. Come on. 来吧(赶快)8. Hold on. 等一等。9. I agree。 我同意。10. Not bad. 还不错。11. Not yet. 还没。12. See you. 再见。13. Shut up!
- Java访问远程服务
dyy_gusi
httpclientwebservicegetpost
随着webService的崛起,我们开始中会越来越多的使用到访问远程webService服务。当然对于不同的webService框架一般都有自己的client包供使用,但是如果使用webService框架自己的client包,那么必然需要在自己的代码中引入它的包,如果同时调运了多个不同框架的webService,那么就需要同时引入多个不同的clien
- Maven的settings.xml配置
geeksun
settings.xml
settings.xml是Maven的配置文件,下面解释一下其中的配置含义:
settings.xml存在于两个地方:
1.安装的地方:$M2_HOME/conf/settings.xml
2.用户的目录:${user.home}/.m2/settings.xml
前者又被叫做全局配置,后者被称为用户配置。如果两者都存在,它们的内容将被合并,并且用户范围的settings.xml优先。
- ubuntu的init与系统服务设置
hongtoushizi
ubuntu
转载自:
http://iysm.net/?p=178 init
Init是位于/sbin/init的一个程序,它是在linux下,在系统启动过程中,初始化所有的设备驱动程序和数据结构等之后,由内核启动的一个用户级程序,并由此init程序进而完成系统的启动过程。
ubuntu与传统的linux略有不同,使用upstart完成系统的启动,但表面上仍维持init程序的形式。
运行
- 跟我学Nginx+Lua开发目录贴
jinnianshilongnian
nginxlua
使用Nginx+Lua开发近一年的时间,学习和实践了一些Nginx+Lua开发的架构,为了让更多人使用Nginx+Lua架构开发,利用春节期间总结了一份基本的学习教程,希望对大家有用。也欢迎谈探讨学习一些经验。
目录
第一章 安装Nginx+Lua开发环境
第二章 Nginx+Lua开发入门
第三章 Redis/SSDB+Twemproxy安装与使用
第四章 L
- php位运算符注意事项
home198979
位运算PHP&
$a = $b = $c = 0;
$a & $b = 1;
$b | $c = 1
问a,b,c最终为多少?
当看到这题时,我犯了一个低级错误,误 以为位运算符会改变变量的值。所以得出结果是1 1 0
但是位运算符是不会改变变量的值的,例如:
$a=1;$b=2;
$a&$b;
这样a,b的值不会有任何改变
- Linux shell数组建立和使用技巧
pda158
linux
1.数组定义 [chengmo@centos5 ~]$ a=(1 2 3 4 5) [chengmo@centos5 ~]$ echo $a 1 一对括号表示是数组,数组元素用“空格”符号分割开。
2.数组读取与赋值 得到长度: [chengmo@centos5 ~]$ echo ${#a[@]} 5 用${#数组名[@或
- hotspot源码(JDK7)
ol_beta
javaHotSpotjvm
源码结构图,方便理解:
├─agent Serviceab
- Oracle基本事务和ForAll执行批量DML练习
vipbooks
oraclesql
基本事务的使用:
从账户一的余额中转100到账户二的余额中去,如果账户二不存在或账户一中的余额不足100则整笔交易回滚
select * from account;
-- 创建一张账户表
create table account(
-- 账户ID
id number(3) not null,
-- 账户名称
nam