题目一:给出两个单词(start和end)和一个字典,找到从start到end的最短转换序列
例子:
给出数据如下:
start = “hit”
end = “cog”
dict = [“hot”,”dot”,”dog”,”lot”,”log”]
一个最短的变换序列是 “hit” -> “hot” -> “dot” -> “dog” -> “cog”,
返回它的长度 5。
方法:求最短路径、树最小深度问题bfs最适合。本题bfs要注意的问题:
class Solution {
public:
int ladderLength(string start, string end, unordered_set<string> &dict) {
// IMPORTANT: Please reset any member data you declared, as
// the same Solution instance will be reused for each test case.
//BFS遍历找到的第一个匹配就是最短转换,空字符串是层与层之间的分隔标志
queue<string> Q;
Q.push(start); Q.push("");
int res = 1;
while(Q.empty() == false)
{
string str = Q.front();
Q.pop();
if(str != "")
{
int strLen = str.length();
for(int i = 0; i < strLen; i++)
{
char tmp = str[i];
for(char c = 'a'; c <= 'z'; c++)
{
if(c == tmp)continue;
str[i] = c;
if(str == end)return res+1;
if(dict.find(str) != dict.end())
{
Q.push(str);
dict.erase(str);
}
}
str[i] = tmp;
}
}
else if(Q.empty() == false)
{//到达当前层的结尾,并且不是最后一层的结尾
res++;
Q.push("");
}
}
return 0;
}
};
题目二:给出两个单词(start和end)和一个字典,找出所有从start到end的最短转换序列。所有单词具有相同的长度。所有单词都只包含小写字母。
例子:
给出数据如下:
start = “hit”
end = “cog”
dict = [“hot”,”dot”,”dog”,”lot”,”log”]
返回
[
[“hit”,”hot”,”dot”,”dog”,”cog”],
[“hit”,”hot”,”lot”,”log”,”cog”]
]
方法:本题主要的框架和上一题是一样,但是还要解决两个额外的问题:一、 怎样保证求得所有的最短路径;二、 怎样构造这些路径
第一问题:
第二个问题:
class Solution {
public:
typedef unordered_set<string>::iterator HashIter;
vector<vector<string>> findLadders(string start, string end, unordered_set<string> &dict) {
// Note: The Solution object is instantiated only once and is reused by each test case.
queue<string> Q;
Q.push(start); Q.push("");
bool hasFound = false;
unordered_map<string,vector<string> >prePath;//前驱路径
unordered_set<string> hashtable;//保证bfs时插入队列的元素不存在重复
while(Q.empty() == false)
{
string str = Q.front(), strCopy = str;
Q.pop();
if(str != "")
{
int strLen = str.length();
for(int i = 0; i < strLen; i++)
{
char tmp = str[i];
for(char c = 'a'; c <= 'z'; c++)
{
if(c == tmp)continue;
str[i] = c;
if(str == end)
{
hasFound = true;
prePath[end].push_back(strCopy);
//找到了一条最短路径,当前单词的其它转换就没必要
goto END;
}
if(dict.find(str) != dict.end())
{
prePath[str].push_back(strCopy);
//保证bfs时插入队列的元素不存在重复
if(hashtable.find(str) == hashtable.end())
{Q.push(str); hashtable.insert(str);}
}
}
str[i] = tmp;
}
}
else if(Q.empty() == false)//到当前层的结尾,且不是最后一层的结尾
{
if(hasFound)break;
//避免进入死循环,把bfs上一层插入队列的元素从字典中删除
for(HashIter ite = hashtable.begin(); ite != hashtable.end(); ite++)
dict.erase(*ite);
hashtable.clear();
Q.push("");
}
END: ;
}
vector<vector<string> > res;
if(prePath.find(end) == prePath.end())return res;
vector<string> tmpres;
tmpres.push_back(end);
ConstructResult(prePath, res, tmpres, start, end);
return res;
}
private:
//从前驱路径中回溯构造path
void ConstructResult(unordered_map<string,vector<string> > &prePath,
vector<vector<string> > &res, vector<string> &tmpres,
string &start, string &end)
{
if(start == end)
{
reverse(tmpres.begin(), tmpres.end());
res.push_back(tmpres);
reverse(tmpres.begin(), tmpres.end());
return;
}
vector<string> &pre = prePath[end];
for(int i = 0; i < pre.size(); i++)
{
tmpres.push_back(pre[i]);
ConstructResult(prePath, res, tmpres, start, pre[i]);
tmpres.pop_back();
}
}
};