Shuffle

# 简介

shuffle 是spark 计算核心的的部分之一,很多优化也是基于shuffle来做,所以了解它也是必要的。stage按照是否是宽依赖来切分,而两个stage之间就需要shuffle来做桥梁。shuffle分为shuffle write 和 shuffle read。现在来看看。

# Shuffle Write

一、在ShuffleMapTask的runTask方法里可以看到下面这段

```

var writer: ShuffleWriter[Any, Any] = null

    try {

      val manager = SparkEnv.get.shuffleManager

      writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context)

      writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]])

      writer.stop(success = true).get

```

二、根据该依赖是否需要map-side aggreation或序列化或其它来选择不同的writer

```

handle match {

      case unsafeShuffleHandle: SerializedShuffleHandle[K @unchecked, V @unchecked] =>

        new UnsafeShuffleWriter(

          env.blockManager,

          shuffleBlockResolver.asInstanceOf[IndexShuffleBlockResolver],

          context.taskMemoryManager(),

          unsafeShuffleHandle,

          mapId,

          context,

          env.conf)

      case bypassMergeSortHandle: BypassMergeSortShuffleHandle[K @unchecked, V @unchecked] =>

        new BypassMergeSortShuffleWriter(

          env.blockManager,

          shuffleBlockResolver.asInstanceOf[IndexShuffleBlockResolver],

          bypassMergeSortHandle,

          mapId,

          context,

          env.conf)

      case other: BaseShuffleHandle[K @unchecked, V @unchecked, _] =>

        new SortShuffleWriter(shuffleBlockResolver, other, mapId, context)

```

三、先来分析SortShuffleWriter

```

先根据是否需要map-side combine 获取sorter,接着调用sorter.insert

sorter = if (dep.mapSideCombine) {

      require(dep.aggregator.isDefined, "Map-side combine without Aggregator specified!")

      new ExternalSorter[K, V, C](

        context, dep.aggregator, Some(dep.partitioner), dep.keyOrdering, dep.serializer)

    } else {

      // In this case we pass neither an aggregator nor an ordering to the sorter, because we don't

      // care whether the keys get sorted in each partition; that will be done on the reduce side

      // if the operation being run is sortByKey.

      new ExternalSorter[K, V, V](

        context, aggregator = None, Some(dep.partitioner), ordering = None, dep.serializer)

    }

    sorter.insertAll(records)

```

四、分析insertAll

```

  if (shouldCombine) {

      // Combine values in-memory first using our AppendOnlyMap

      val mergeValue = aggregator.get.mergeValue

      val createCombiner = aggregator.get.createCombiner

      var kv: Product2[K, V] = null

      val update = (hadValue: Boolean, oldValue: C) => {

        if (hadValue) mergeValue(oldValue, kv._2) else createCombiner(kv._2)

      }

      while (records.hasNext) {

        addElementsRead()

        kv = records.next()

        map.changeValue((getPartition(kv._1), kv._1), update)

        maybeSpillCollection(usingMap = true)

      }

    } else {

      。。。。。

      }

    }

```

五、分析 maybeSpillCollection 根据是否有map-side 的combine,选取不同的数据存储结构

```

private def maybeSpillCollection(usingMap: Boolean): Unit = {

    var estimatedSize = 0L

    if (usingMap) {

      estimatedSize = map.estimateSize()

      if (maybeSpill(map, estimatedSize)) {

        map = new PartitionedAppendOnlyMap[K, C]

      }

    } else {

      estimatedSize = buffer.estimateSize()

      if (maybeSpill(buffer, estimatedSize)) {

        buffer = new PartitionedPairBuffer[K, C]

      }

    }

```

六、maybeSpill 该函数会判断当前内存数据是否超过了阈值,如果超过了,会调用spill()函数按照partitionId 和 key排序后写入磁盘。

```

override protected[this] def spill(collection: WritablePartitionedPairCollection[K, C]): Unit = {

    val inMemoryIterator = collection.destructiveSortedWritablePartitionedIterator(comparator)

    val spillFile = spillMemoryIteratorToDisk(inMemoryIterator)

    spills += spillFile

  }

```

七、数据处理完后,还需要将内存的数据和各个spillFile的数据全局排序后写到一个磁盘文件里,并且生成一个索引文件,标记每个partition的offset。

```

private def mergeSort(iterators: Seq[Iterator[Product2[K, C]]], comparator: Comparator[K])

      : Iterator[Product2[K, C]] =

  {

    val bufferedIters = iterators.filter(_.hasNext).map(_.buffered)

    type Iter = BufferedIterator[Product2[K, C]]

    val heap = new mutable.PriorityQueue[Iter]()(new Ordering[Iter] {

      // Use the reverse of comparator.compare because PriorityQueue dequeues the max

      override def compare(x: Iter, y: Iter): Int = -comparator.compare(x.head._1, y.head._1)

    })

    heap.enqueue(bufferedIters: _*)  // Will contain only the iterators with hasNext = true

    new Iterator[Product2[K, C]] {

      override def hasNext: Boolean = !heap.isEmpty

      override def next(): Product2[K, C] = {

        if (!hasNext) {

          throw new NoSuchElementException

        }

        val firstBuf = heap.dequeue()

        val firstPair = firstBuf.next()

        if (firstBuf.hasNext) {

          heap.enqueue(firstBuf)

        }

        firstPair

      }

    }

  }

可以看到其使用了PriorityQueue这样的数据机构来排序,把内存和spillFile抽象成iterator,放入queue,queue会按照自定义的comparetor把最大的(key,value)排在前面,每次从queue取出的值都是当前最大的,最后写到disk。这样就能生成一个全局有序的大文件。

```

八、生成索引文件 记录每个partition的offset,方便 shuffle read 读取。

```

def writeIndexFileAndCommit(

      shuffleId: Int,

      mapId: Int,

      lengths: Array[Long],

      dataTmp: File): Unit = {

    val indexFile = getIndexFile(shuffleId, mapId)

    val indexTmp = Utils.tempFileWith(indexFile)

    try {

      val out = new DataOutputStream(

        new BufferedOutputStream(Files.newOutputStream(indexTmp.toPath)))

      Utils.tryWithSafeFinally {

        // We take in lengths of each block, need to convert it to offsets.

        var offset = 0L

        out.writeLong(offset)

        for (length <- lengths) {

          offset += length

          out.writeLong(offset)

,,,,,,,,,,,

```

# Shuffle Read

shuffle read的调用,在shuffle rdd 的compute算子里

```

override def compute(split: Partition, context: TaskContext): Iterator[(K, C)] = {

    val dep = dependencies.head.asInstanceOf[ShuffleDependency[K, V, C]]

    SparkEnv.get.shuffleManager.getReader(dep.shuffleHandle, split.index, split.index + 1, context)

      .read()

      .asInstanceOf[Iterator[(K, C)]]

  }

//根据partitionid去blockManager查找对应partition的shuffle文件

override def getReader[K,C](

handle: ShuffleHandle,

startPartition: Int,

endPartition: Int,

context: TaskContext): ShuffleReader[K,C] = {

new BlockStoreShuffleReader(

handle.asInstanceOf[BaseShuffleHandle[K, _,C]], startPartition, endPartition, context)

}

之后的排序 合并和shffule write基本一样

//


```

你可能感兴趣的:(Shuffle)