Ceres-Solver是google出的解决非线性最小二乘问题的库,非线性最小二乘问题具有如下形式:
ρi(∥fi(xi1,…,xik)∥2)是我们所说的残差,fi(⋅)在Ceres中叫做CostFunction,ρi(⋅)叫做LossFunction,用来剔除异常值影响。
Ceres最简单的应用,其他博主的博客中已经有很好的说明, Ceres-Solver库入门
这里做一个小的总结:
对于AutoDiffCostFunction类型的CostFunction,我们构造一个结构体,重写template operator(),注意类型为模板类型,重新定义了()函数,将结构体作为AutoDiffCostFunction的参数。
// struct
struct CostFunctor {
template <typename T>
bool operator()(const T* const x, T* residual) const {
residual[0] = T(10.0) - x[0];
return true;
}
};
// make CostFunction
CostFunction* cost_function =
new AutoDiffCostFunction1, 1>(new CostFunctor);
problem.AddResidualBlock(cost_function, NULL, &x);
对于NumericDiffCostFunction类型的CostFunction,与AutoDiffCostFunction类似,只不过将结构体的接收类型不再是模板类型,用double类型代替了模板类型。
// struct
struct NumericDiffCostFunctor {
bool operator()(const double* const x, double* residual) const {
residual[0] = 10.0 - x[0];
return true;
}
};
// make CostFunction
CostFunction* cost_function =
new NumericDiffCostFunction1, 1>(
new NumericDiffCostFunctor);
problem.AddResidualBlock(cost_function, NULL, &x);
谷歌推荐类型为AutoDiffCostFunction,C++模板的使用使得AutoDiff效率更高,而数值的差花费更多,容易出现数字错误,导致收敛速度变慢。
在有些情况下,不使用AutoDiffCostFunction,例如我们用近似的方式计算导数,而不是用AutoDiff的链式法则,我们需要自己的残差和Jacobin计算。这时我们定义一个CostFunction或者SizedCostFunction的子类。
class QuadraticCostFunction : public ceres::SizedCostFunction<1, 1> {
public:
virtual ~QuadraticCostFunction() {}
virtual bool Evaluate(double const* const* parameters,
double* residuals,
double** jacobians) const {
const double x = parameters[0][0];
residuals[0] = 10 - x;
// Compute the Jacobian if asked for.
if (jacobians != NULL && jacobians[0] != NULL) {
jacobians[0][0] = -1;
}
return true;
}
};
SimpleCostFunction::Evaluate 提供一个 parameters 数组作为输入, 输出 residuals 数组作为残差 ,输出数组 jacobians来显示Jacobians. jacobians是一个可选项,Evaluate检查他是否为 non-null,如果非空,就用残差方程的导数来填充他,因为残差方程是线性的,所以jacobians是常数。(输出惨差和jacobians怎么用? 如何构建CostFunction?)
对于有多个残差的情况,我们可以构建多个AutoDiffCostFunction,例如
// struct
/* struct F1 F2 F3 is omited */
struct F4 {
template <typename T>
bool operator()(const T* const x1, const T* const x4, T* residual) const {
residual[0] = T(sqrt(10.0)) * (x1[0] - x4[0]) * (x1[0] - x4[0]);
return true;
}
};
// make CostFunction
problem.AddResidualBlock(
new AutoDiffCostFunction1, 1, 1>(new F1), NULL, &x1, &x2);
problem.AddResidualBlock(
new AutoDiffCostFunction1, 1, 1>(new F2), NULL, &x3, &x4);
problem.AddResidualBlock(
new AutoDiffCostFunction1, 1, 1>(new F3), NULL, &x2, &x3)
problem.AddResidualBlock(
new AutoDiffCostFunction1, 1, 1>(new F4), NULL, &x1, &x4);
AddResidualBlock函数是一个模板函数,模板参数为”CostFunction,LossFunction,param1,param2,…”,LossFunction可以为NULL,表示不使用LossFunction,param最多有10个。
接下来会对Ceres例程做一下学习。