偏微分方程 基础知识(线性偏微分方程+常系数线性偏微分方程) | 偏微分方程(一)

偏微分方程:指含有多元未知函数 u = u ( x ) , x = ( x 1 , x 2 , . . . , X n ) u=u(x),x=(x_1,x_2,...,X_n) u=u(x),x=(x1,x2,...,Xn)及其若干阶偏导数的关系式
F ( x , u , ∂ u ∂ x 1 , ∂ u ∂ x 2 , . . . , ∂ u ∂ x n , . . . , ∂ m u ∂ x 1 m 1 ∂ x 2 m 2 . . . ∂ x n m n ) = 0 F(\bold x,u,\frac{\partial u}{\partial x_1},\frac{\partial u}{\partial x_2},...,\frac{\partial u}{\partial x_n},...,\frac{\partial^m u}{\partial x_1^{m_1}\partial x_2^{m_2}...\partial x_n^{m_n}})=0 F(x,u,x1u,x2u,...,xnu,...,x1m1x2m2...xnmnmu)=0
其中,最高阶导数的阶数 m = m 1 + m 1 + . . . + m n m=m_1+m_1+...+m_n m=m1+m1+...+mn
方程的阶

线性偏微分方程:偏微分方程中与未知函数有关的部分是 u u u u u u的偏导数的线性组合(系数与 u u u u u u的偏导数无关)。

常系数线性微分方程:方程中u和u的偏导数的系数是常数

意义:偏微分方程反映了变量u及多个自变量 x = ( x 1 , x 2 , . . . , x n ) \bold x=(x_1,x_2,...,x_n) x=(x1,x2,...,xn)间的相互制约关系。

数学物理方程:从物理问题中导出的偏微分方程称为数学物理中的偏微分方程。有时还包括常微分方程和积分方程。

偏微分方程的定解问题:泛定方程+定解条件

  • 泛定方程
  1. 波动方程 : ∂ 2 u ∂ t 2 = a 2 Δ u + f ( t , x → ) , a = T ρ , f ( t , x → ) = g ( t , x → ) ρ \frac{\partial^2 u}{\partial t^2}=a^2\Delta u+f(t,\overrightarrow x),a=\sqrt{\frac{T}{\rho}},f(t,\overrightarrow x)=\frac{g(t,\overrightarrow x)}{\rho} t22u=a2Δu+f(t,x ),a=ρT ,f(t,x )=ρg(t,x )

  2. 扩散方程: ∂ u ∂ t = a 2 Δ u + f ( t , x → ) ,   a = κ c ρ , f ( t , x → ) = g ( t , x → ) c ρ \frac{\partial u}{\partial t}=a^2\Delta u+f(t,\overrightarrow x),\space a=\sqrt{\frac{\kappa}{c\rho}},f(t,\overrightarrow x)=\frac{g(t,\overrightarrow x)}{c\rho} tu=a2Δu+f(t,x ), a=cρκ ,f(t,x )=cρg(t,x )

  3. 场位方程: Δ u = − f ( x ) x = ( x 1 , x 2 , . . . , x n ) , n = 1 , 2 , 3 \Delta u=-f(x) \quad \bold x=(x_1,x_2,...,x_n),\quad n=1,2,3 Δu=f(x)x=(x1,x2,...,xn),n=1,2,3

  • 定解条件
  1. 初始条件(历史情况的影响)

  2. 边界条件(周围环境对边界的影响)

    第I类边界条件(给顶端点值): u ∣ x = x i = μ i ( t ) u|_{x=x_i}=\mu_i(t) ux=xi=μi(t)

    第II类边界条件(给定端点梯度): ∂ u ∂ n ∣ x = x i = f i ( t ) \frac{\partial u}{\partial n}|_{x=x_i}=f_i(t) nux=xi=fi(t)

    第III类边界条件(混合I&II): [ a i u + β i ∂ u ∂ n ] x = x i = F i ( t ) [a_iu+\beta_i\frac{\partial u}{\partial n}]_{x=x_i}=F_i(t) [aiu+βinu]x=xi=Fi(t)

  3. 衔接条件(系统内部边界)

实际应用:找出泛定方程+定解条件,然后利用多种方法解偏微分方程

你可能感兴趣的:(微分方程)