- 【目标检测数据集】卡车数据集1073张VOC+YOLO格式
熬夜写代码的平头哥∰
目标检测YOLO人工智能
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):1073标注数量(xml文件个数):1073标注数量(txt文件个数):1073标注类别数:1标注类别名称:["truck"]每个类别标注的框数:truck框数=1120总框数:1120使用标注工具:labelImg标注
- 番茄西红柿叶子病害分类数据集12882张11类别
futureflsl
数据集分类数据挖掘人工智能
数据集类型:图像分类用,不可用于目标检测无标注文件数据集格式:仅仅包含jpg图片,每个类别文件夹下面存放着对应图片图片数量(jpg文件个数):12882分类类别数:11类别名称:["Bacterial_Spot_Bacteria","Early_Blight_Fungus","Healthy","Late_Blight_Water_Mold","Leaf_Mold_Fungus","Powdery
- [数据集][目标检测]汽车头部尾部检测数据集VOC+YOLO格式5319张3类别
FL1623863129
数据集目标检测汽车YOLO
数据集制作单位:未来自主研究中心(FIRC)版权单位:未来自主研究中心(FIRC)版权声明:数据集仅仅供个人使用,不得在未授权情况下挂淘宝、咸鱼等交易网站公开售卖,由此引发的法律责任需自行承担数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):5319标注数量(xml文件
- CV、NLP、数据控掘推荐、量化
海的那边-
AI算法自然语言处理人工智能
下面是对CV(计算机视觉)、NLP(自然语言处理)、数据挖掘推荐和量化的简要概述及其应用领域的介绍:1.CV(计算机视觉,ComputerVision)定义:计算机视觉是一门让计算机能够从图像或视频中提取有用信息,并做出决策的学科。它通过模拟人类的视觉系统来识别、处理和理解视觉信息。主要任务:图像分类:识别图像中的物体并分类,比如猫、狗、车等。目标检测:在图像或视频中定位并识别多个对象,如人脸检测
- 【目标检测数据集】番茄叶片病害数据集13940张9类VOC+YOLO格式
熬夜写代码的平头哥∰
数据集目标检测YOLO目标跟踪
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):13946标注数量(xml文件个数):13946标注数量(txt文件个数):13946标注类别数:9标注类别名称:["EarlyBlight","Healthy","LateBlight","LeafMiner","Le
- [数据集][目标检测]血细胞检测数据集VOC+YOLO格式2757张4类别
FL1623863129
数据集目标检测YOLO人工智能
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):2757标注数量(xml文件个数):2757标注数量(txt文件个数):2757标注类别数:4标注类别名称:["Platelets","RBC","WBC","sicklecell"]每个类别标注的框数:Platelet
- 目标检测YOLO系列从入门到精通技术详解100篇-【目标检测】工业相机
格图素书
数码相机目标检测人工智能
目录知识储备深度相机1TOF2双目视觉3结构光4智能门锁应用5手机应用算法原理相机的成像与标定模型相机标定的实施·标定过程的算法实施相机标定的扩展CCD工业相机、镜头倍率及相关参数计算方法知识储备深度相机1TOF1.1Kinectv2Kinectv2是Microsoft在2014年发售的,如图1-1所示。相比于Kinectv1在硬件和软件上作出了很大的进化,且在深度测量的系统和非系统误差方面表现出
- 【小贪】项目实战——Zero-shot根据文字提示分割出图片目标掩码
贪钱算法还我头发
#DeepLearning#ComputerVisionAI目标检测深度学习python语义分割Zero-shot
目标描述给定RGB视频或图片,目标是分割出图像中的指定目标掩码。我们需要复现两个Zero-shot的开源项目,分别为IDEA研究院的GroundingDINO和Facebook的SAM。首先使用目标检测方法GroundingDINO,输入想检测目标的文字提示,可以获得目标的anchorbox。将上一步获得的box信息作为SAM的提示,分割出目标mask。具体效果如下(测试数据来自VolumeDef
- yolov5 +gui界面+单目测距 实现对图片视频摄像头的测距
毕设宇航
QQ767172261yolov5单目测距
可实现对图片,视频,摄像头的检测项目概述本项目旨在实现一个集成了YOLOv5目标检测算法、图形用户界面(GUI)以及单目测距功能的系统。该系统能够对图片、视频或实时摄像头输入进行目标检测,并估算目标的距离。通过结合YOLOv5的强大检测能力和单目测距技术,系统能够在多种应用场景中提供高效、准确的目标检测和测距功能。技术栈YOLOv5:用于目标检测的深度学习模型。OpenCV:用于图像处理和单目测距
- 目标检测-YOLOv3
wydxry
深度学习目标检测YOLO深度学习
YOLOv3介绍YOLOv3(YouOnlyLookOnce,Version3)是YOLO系列目标检测模型的第三个版本,相较于YOLOv2有了显著的改进和增强,尤其在检测速度和精度上表现优异。YOLOv3的设计目标是在保持高速的前提下提升检测的准确性和稳定性。下面是对YOLOv3改进和优势的介绍,以及YOLOv3核心部分的代码展示。相比YOLOv2的改进与优势多尺度特征金字塔YOLOv3引入了FP
- SSD目标检测系统
月见樽
首发于个人博客系统结构system.pngSSD识别系统也是一种单步物体识别系统,即将提取物体位置和判断物体类别融合在一起进行,其最主要的特点是识别器用于判断物体的特征不仅仅来自于神经网络的输出,还来自于神经网络的中间结果。该系统分为以下几个部分:神经网络部分:用作特征提取器,提取图像特征识别器:根据神经网络提取的特征,生成包含物品位置和类别信息的候选框(使用卷积实现)后处理:对识别器提取出的候选
- 深度学习目标检测入门COCO数据集
日暮途远z
深度学习目标检测人工智能
常见数据集类型:COCO数据集:Pytorch加载COCO数据集:COCO数据集的读取COCO_dataset=torchvision.datasets.CocoDetection(root="./dataset/val2017",annFile="./instances_val2017/instances_val2017.json")root(strorpathlib.Path)–Rootdir
- [数据集][目标检测]街道乱堆垃圾检测数据集VOC+YOLO格式94张1类别
FL1623863129
数据集目标检测YOLO人工智能
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):94标注数量(xml文件个数):94标注数量(txt文件个数):94标注类别数:1标注类别名称:["baolu"]每个类别标注的框数:baolu框数=107总框数:107使用标注工具:labelImg标注规则:对类别进行
- YOLOv8改进 | 检测头篇 | YOLOv8引入DynamicHead检测头
小李学AI
YOLOv8有效涨点专栏YOLO深度学习目标检测计算机视觉机器学习人工智能
1.DynamicHead描述1.1摘要:在目标检测中,定位和分类相结合的复杂性导致了各种方法的蓬勃发展。以往的工作试图提高各种目标检测头的性能,但未能呈现出统一的观点。本文根据目标检测的特点,推导了一种新的动态头部框架,将目标检测头部与注意力统一起来。该方法通过在特征层次间、空间位置间和输出通道内协调组合多种自注意机制,在不增加计算开销的情况下显著提高了目标检测头的表示能力。进一步的实验表明,本
- 目标检测-YOLOv1
wydxry
深度学习目标检测YOLO人工智能
YOLOv1介绍YOLOv1(YouOnlyLookOnceversion1)是一种用于目标检测的深度学习算法,由JosephRedmon等人于2016年提出。它基于单个卷积神经网络,将目标检测任务转化为一个回归问题,通过在图像上划分网格并预测每个网格中是否包含目标以及目标的位置和类别来实现目标检测。YOLOv1的主要特点包括:快速的检测速度:相比于传统的目标检测算法,YOLOv1具有更快的检测速
- [数据集][目标检测]人脸口罩佩戴目标检测数据集VOC+YOLO格式8068张3类别
FL1623863129
数据集目标检测YOLO目标跟踪
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):8068标注数量(xml文件个数):8068标注数量(txt文件个数):8068标注类别数:3标注类别名称:["face_with_mask","face_without_mask","mask"]每个类别标注的框数:f
- 葡萄检测-目标检测数据集(包括VOC格式、YOLO格式)
数据集_深度学习
目标检测YOLO人工智能计算机视觉葡萄
葡萄检测-目标检测数据集(包括VOC格式、YOLO格式)数据集:链接:https://pan.baidu.com/s/1YMwAaSJc8H5SI0f8RVSidw?pwd=iygs提取码:iygs数据集信息介绍:共有1646张图像和一一对应的标注文件标注文件格式提供了两种,包括VOC格式的xml文件和YOLO格式的txt文件。标注的对象共有以下几种:[‘grape’]标注框的数量信息如下:(标注
- OpenCV项目实战-深度学习去阴影-图像去阴影
阿利同学
opencv深度学习人工智能阴影去除图像去阴影
往期热门博客项目回顾:计算机视觉项目大集合改进的yolo目标检测-测距测速路径规划算法图像去雨去雾+目标检测+测距项目交通标志识别项目yolo系列-重磅yolov9界面-最新的yolo姿态识别-3d姿态识别深度学习小白学习路线//正文开始!图像去阴影算法旨在改善图像质量并恢复阴影下物体的真实颜色与亮度这对于许多计算机视觉任务如物体识别、跟踪以及增强现实等至关重要。以下是一些图像去阴影算法的基本概述
- 目标检测-YOLOv4
wydxry
深度学习目标检测YOLO目标跟踪
YOLOv4介绍YOLOv4是YOLO系列的第四个版本,继承了YOLOv3的高效性,并通过大量优化和改进,在目标检测任务中实现了更高的精度和速度。相比YOLOv3,YOLOv4在框架设计、特征提取、训练策略等方面进行了全面升级。它在保持实时检测的同时,显著提升了检测性能,尤其在复杂场景中的表现尤为出色。相比YOLOv3的改进与优势改进的Backbone(CSPDarknet-53)YOLOv4使用
- [数据集][目标检测]井盖丢失未盖破损检测数据集VOC+YOLO格式2890张5类别
FL1623863129
数据集目标检测YOLO人工智能
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):2890标注数量(xml文件个数):2890标注数量(txt文件个数):2890标注类别数:5标注类别名称:["broke","circle","good","lose","uncovered"]每个类别标注的框数:br
- YOLOv8改进 更换轻量级网络结构
学yolo的小白
UpgradeYOLOv8进阶YOLO目标检测深度学习
一、GhostNet论文论文地址:1911.11907.pdf(arxiv.org)二、GhostNet结构GhostNet是一种高效的目标检测网络,具有较低的计算复杂度和较高的准确性。该网络采用了轻量级的架构,可以在计算资源有限的设备上运行,并能够快速地实时检测图像中的目标物体。GhostNet基于MobileNetV3的设计思路,采用了Ghost模块来减少网络参数数量,从而减少计算量并提高模型
- 【Python】成功解决TypeError: list indices must be integers or slices, not str
高斯小哥
BUG解决方案合集pythonlist新手入门学习debug
【Python】成功解决TypeError:listindicesmustbeintegersorslices,notstr欢迎进入我的个人主页,我是高斯小哥!博主档案:广东某985本硕,SCI顶刊一作,深耕深度学习多年,熟练掌握PyTorch框架。技术专长:擅长处理各类深度学习任务,包括但不限于图像分类、图像重构(去雾\去模糊\修复)、目标检测、图像分割、人脸识别、多标签分类、重识别(行人\车辆
- LeYOLO 用于目标检测的新型可扩展和高效CNN架构 | 最新轻量化SOTA! 5GFLOP下无对手!
迪菲赫尔曼
YOLOv8改进实战目标检测cnn架构pytorch深度学习轻量化
本改进已集成到YOLOv8-Magic框架。论文地址:https://arxiv.org/pdf/2406.14239代码地址:https://github.com/LilianHollard/LeYOLO/tree/main在深度神经网络中,计算效率对于目标检测至关重要,尤其是在新型模型更倾向于速度而非计算效率(浮点运算次数,FLOP)的情况下。这种演变在一定程度上忽视了嵌入式和面向移动的AI目
- Python 使用 Detectron2 进行目标检测 (Detectron2, CenterNet2, Detic)
Eric Woo X
PythonAIUbuntupython目标检测开发语言
代码说明代码主要是一个用来演示如何使用Detectron2进行目标检测的脚本。它可以从摄像头或视频文件中读取图像,并应用指定的配置文件进行目标检测。其中,Detectron2结合了CenterNet2和Detic进行目标检测。主要库介绍Detectron2Detectron2是由FacebookAIResearch开发的一个用于目标检测和实例分割的开源库。它提供了一系列预训练模型和灵活的配置系统,
- Transformer+目标检测,这一篇入门就够了
BIT可达鸭
▶深度学习-计算机视觉transformer深度学习目标检测计算机视觉自然语言处理
VisionTransformerforObjectDetection本文作者:Encoder-Decoder简介:Encoder-Decoder的缺陷:Attention机制:Self-Attention机制:Multi-HeadAttention:Transformer结构:图像分类之ViT:图像分类之PyramidViT:目标检测之DETR:目标检测之DeformableDETR:本文作者:
- 目标检测-YOLOv2
wydxry
深度学习目标检测YOLO人工智能
YOLOv2介绍YOLOv2(YouOnlyLookOnceversion2)是一种用于目标检测的深度学习模型,由JosephRedmon等人于2016年提出,并详细论述在其论文《YOLO9000:Better,Faster,Stronger》中。YOLOv2在保持高速检测的同时,显著提升了检测的精度和泛化能力,成为实时目标检测领域的重要算法之一。核心原理YOLOv2的核心原理是将目标检测问题转化
- 【计算机视觉前沿研究 热点 顶会】ECCV 2024中目标检测有关的论文
平安顺遂事事如意
顶刊顶会论文合集计算机视觉目标检测人工智能3d目标跟踪
整值训练和尖峰驱动推理脉冲神经网络用于高性能和节能的目标检测与人工神经网络(ANN)相比,脑激励的脉冲神经网络(SNN)具有生物合理性和低功耗的优势。由于SNN的性能较差,目前的应用仅限于简单的分类任务。在这项工作中,我们专注于弥合人工神经网络和神经网络在目标检测方面的性能差距。我们的设计围绕着网络架构和尖峰神经元。当行人检测遇到多模态学习时:通才模型和基准数据集近年来,利用不同传感器模态(如RG
- 目标检测——YOLOv8模型预测结果
张飞飞飞飞飞
目标检测YOLO人工智能
fromultralyticsimportYOLOmodel_path=r'/home/zhangh/project1/workproject/YOLOv8/ultralytics/runs/train/2024723_yolov8n5/weights/best.pt'img_path=r'worker_data/images/val/%E9%93%B2%E6%96%97%E5%9D%90%E4%
- 基于yolov8的口罩佩戴检测系统python源码+onnx模型+评估指标曲线+精美GUI界面
FL1623863129
深度学习python
【算法介绍】基于YOLOv8的口罩佩戴检测系统是一款利用深度学习技术,特别是YOLOv8算法,实现高效、准确检测人脸是否佩戴口罩的系统。YOLOv8作为YOLO系列算法的最新版本,在检测速度和准确性上进行了显著优化,能够实时处理图像和视频数据。该系统通过训练大量标注了人脸和口罩状态(包括戴口罩、未戴口罩)的图片数据,构建了一个强大的目标检测模型。在实际应用中,该系统可以部署在公共场所如机场、车站、
- [数据集][目标检测]卫星遥感舰船检测数据集VOC+YOLO格式2238张17类别
FL1623863129
数据集目标检测YOLO人工智能
数据集格式:PascalVOC格式+YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件)图片数量(jpg文件个数):2238标注数量(xml文件个数):2238标注数量(txt文件个数):2238标注类别数:17标注类别名称:[“AircraftCarrier”,“AuxiliaryShips”,“Cargo”,“Commander”
- springmvc 下 freemarker页面枚举的遍历输出
杨白白
enumfreemarker
spring mvc freemarker 中遍历枚举
1枚举类型有一个本地方法叫values(),这个方法可以直接返回枚举数组。所以可以利用这个遍历。
enum
public enum BooleanEnum {
TRUE(Boolean.TRUE, "是"), FALSE(Boolean.FALSE, "否");
- 实习简要总结
byalias
工作
来白虹不知不觉中已经一个多月了,因为项目还在需求分析及项目架构阶段,自己在这段
时间都是在学习相关技术知识,现在对这段时间的工作及学习情况做一个总结:
(1)工作技能方面
大体分为两个阶段,Java Web 基础阶段和Java EE阶段
1)Java Web阶段
在这个阶段,自己主要着重学习了 JSP, Servlet, JDBC, MySQL,这些知识的核心点都过
了一遍,也
- Quartz——DateIntervalTrigger触发器
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2208559 一.概述
simpleTrigger 内部实现机制是通过计算间隔时间来计算下次的执行时间,这就导致他有不适合调度的定时任务。例如我们想每天的 1:00AM 执行任务,如果使用 SimpleTrigger,间隔时间就是一天。注意这里就会有一个问题,即当有 misfired 的任务并且恢复执行时,该执行时间
- Unix快捷键
18289753290
unixUnix;快捷键;
复制,删除,粘贴:
dd:删除光标所在的行 &nbs
- 获取Android设备屏幕的相关参数
酷的飞上天空
android
包含屏幕的分辨率 以及 屏幕宽度的最大dp 高度最大dp
TextView text = (TextView)findViewById(R.id.text);
DisplayMetrics dm = new DisplayMetrics();
text.append("getResources().ge
- 要做物联网?先保护好你的数据
蓝儿唯美
数据
根据Beecham Research的说法,那些在行业中希望利用物联网的关键领域需要提供更好的安全性。
在Beecham的物联网安全威胁图谱上,展示了那些可能产生内外部攻击并且需要通过快速发展的物联网行业加以解决的关键领域。
Beecham Research的技术主管Jon Howes说:“之所以我们目前还没有看到与物联网相关的严重安全事件,是因为目前还没有在大型客户和企业应用中进行部署,也就
- Java取模(求余)运算
随便小屋
java
整数之间的取模求余运算很好求,但几乎没有遇到过对负数进行取模求余,直接看下面代码:
/**
*
* @author Logic
*
*/
public class Test {
public static void main(String[] args) {
// TODO A
- SQL注入介绍
aijuans
sql注入
二、SQL注入范例
这里我们根据用户登录页面
<form action="" > 用户名:<input type="text" name="username"><br/> 密 码:<input type="password" name="passwor
- 优雅代码风格
aoyouzi
代码
总结了几点关于优雅代码风格的描述:
代码简单:不隐藏设计者的意图,抽象干净利落,控制语句直截了当。
接口清晰:类型接口表现力直白,字面表达含义,API 相互呼应以增强可测试性。
依赖项少:依赖关系越少越好,依赖少证明内聚程度高,低耦合利于自动测试,便于重构。
没有重复:重复代码意味着某些概念或想法没有在代码中良好的体现,及时重构消除重复。
战术分层:代码分层清晰,隔离明确,
- 布尔数组
百合不是茶
java布尔数组
androi中提到了布尔数组;
布尔数组默认的是false, 并且只会打印false或者是true
布尔数组的例子; 根据字符数组创建布尔数组
char[] c = {'p','u','b','l','i','c'};
//根据字符数组的长度创建布尔数组的个数
boolean[] b = new bool
- web.xml之welcome-file-list、error-page
bijian1013
javaweb.xmlservleterror-page
welcome-file-list
1.定义:
<welcome-file-list>
<welcome-file>login.jsp</welcome>
</welcome-file-list>
2.作用:用来指定WEB应用首页名称。
error-page1.定义:
<error-page&g
- richfaces 4 fileUpload组件删除上传的文件
sunjing
clearRichfaces 4fileupload
页面代码
<h:form id="fileForm"> <rich:
- 技术文章备忘
bit1129
技术文章
Zookeeper
http://wenku.baidu.com/view/bab171ffaef8941ea76e05b8.html
http://wenku.baidu.com/link?url=8thAIwFTnPh2KL2b0p1V7XSgmF9ZEFgw4V_MkIpA9j8BX2rDQMPgK5l3wcs9oBTxeekOnm5P3BK8c6K2DWynq9nfUCkRlTt9uV
- org.hibernate.hql.ast.QuerySyntaxException: unexpected token: on near line 1解决方案
白糖_
Hibernate
文章摘自:http://blog.csdn.net/yangwawa19870921/article/details/7553181
在编写HQL时,可能会出现这种代码:
select a.name,b.age from TableA a left join TableB b on a.id=b.id
如果这是HQL,那么这段代码就是错误的,因为HQL不支持
- sqlserver按照字段内容进行排序
bozch
按照内容排序
在做项目的时候,遇到了这样的一个需求:
从数据库中取出的数据集,首先要将某个数据或者多个数据按照地段内容放到前面显示,例如:从学生表中取出姓李的放到数据集的前面;
select * fro
- 编程珠玑-第一章-位图排序
bylijinnan
java编程珠玑
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.io.Writer;
import java.util.Random;
public class BitMapSearch {
- Java关于==和equals
chenbowen00
java
关于==和equals概念其实很简单,一个是比较内存地址是否相同,一个比较的是值内容是否相同。虽然理解上不难,但是有时存在一些理解误区,如下情况:
1、
String a = "aaa";
a=="aaa";
==> true
2、
new String("aaa")==new String("aaa
- [IT与资本]软件行业需对外界投资热情保持警惕
comsci
it
我还是那个看法,软件行业需要增强内生动力,尽量依靠自有资金和营业收入来进行经营,避免在资本市场上经受各种不同类型的风险,为企业自主研发核心技术和产品提供稳定,温和的外部环境...
如果我们在自己尚未掌握核心技术之前,企图依靠上市来筹集资金,然后使劲往某个领域砸钱,然
- oracle 数据块结构
daizj
oracle块数据块块结构行目录
oracle 数据块是数据库存储的最小单位,一般为操作系统块的N倍。其结构为:
块头--〉空行--〉数据,其实际为纵行结构。
块的标准大小由初始化参数DB_BLOCK_SIZE指定。具有标准大小的块称为标准块(Standard Block)。块的大小和标准块的大小不同的块叫非标准块(Nonstandard Block)。同一数据库中,Oracle9i及以上版本支持同一数据库中同时使用标
- github上一些觉得对自己工作有用的项目收集
dengkane
github
github上一些觉得对自己工作有用的项目收集
技能类
markdown语法中文说明
回到顶部
全文检索
elasticsearch
bigdesk elasticsearch管理插件
回到顶部
nosql
mapdb 支持亿级别map, list, 支持事务. 可考虑做为缓存使用
C
- 初二上学期难记单词二
dcj3sjt126com
englishword
dangerous 危险的
panda 熊猫
lion 狮子
elephant 象
monkey 猴子
tiger 老虎
deer 鹿
snake 蛇
rabbit 兔子
duck 鸭
horse 马
forest 森林
fall 跌倒;落下
climb 爬;攀登
finish 完成;结束
cinema 电影院;电影
seafood 海鲜;海产食品
bank 银行
- 8、mysql外键(FOREIGN KEY)的简单使用
dcj3sjt126com
mysql
一、基本概念
1、MySQL中“键”和“索引”的定义相同,所以外键和主键一样也是索引的一种。不同的是MySQL会自动为所有表的主键进行索引,但是外键字段必须由用户进行明确的索引。用于外键关系的字段必须在所有的参照表中进行明确地索引,InnoDB不能自动地创建索引。
2、外键可以是一对一的,一个表的记录只能与另一个表的一条记录连接,或者是一对多的,一个表的记录与另一个表的多条记录连接。
3、如
- java循环标签 Foreach
shuizhaosi888
标签java循环foreach
1. 简单的for循环
public static void main(String[] args) {
for (int i = 1, y = i + 10; i < 5 && y < 12; i++, y = i * 2) {
System.err.println("i=" + i + " y="
- Spring Security(05)——异常信息本地化
234390216
exceptionSpring Security异常信息本地化
异常信息本地化
Spring Security支持将展现给终端用户看的异常信息本地化,这些信息包括认证失败、访问被拒绝等。而对于展现给开发者看的异常信息和日志信息(如配置错误)则是不能够进行本地化的,它们是以英文硬编码在Spring Security的代码中的。在Spring-Security-core-x
- DUBBO架构服务端告警Failed to send message Response
javamingtingzhao
架构DUBBO
废话不多说,警告日志如下,不知道有哪位遇到过,此异常在服务端抛出(服务器启动第一次运行会有这个警告),后续运行没问题,找了好久真心不知道哪里错了。
WARN 2015-07-18 22:31:15,272 com.alibaba.dubbo.remoting.transport.dispatcher.ChannelEventRunnable.run(84)
- JS中Date对象中几个用法
leeqq
JavaScriptDate最后一天
近来工作中遇到这样的两个需求
1. 给个Date对象,找出该时间所在月的第一天和最后一天
2. 给个Date对象,找出该时间所在周的第一天和最后一天
需求1中的找月第一天很简单,我记得api中有setDate方法可以使用
使用setDate方法前,先看看getDate
var date = new Date();
console.log(date);
// Sat J
- MFC中使用ado技术操作数据库
你不认识的休道人
sqlmfc
1.在stdafx.h中导入ado动态链接库
#import"C:\Program Files\Common Files\System\ado\msado15.dll" no_namespace rename("EOF","end")2.在CTestApp文件的InitInstance()函数中domodal之前写::CoIniti
- Android Studio加速
rensanning
android studio
Android Studio慢、吃内存!启动时后会立即通过Gradle来sync & build工程。
(1)设置Android Studio
a) 禁用插件
File -> Settings... Plugins 去掉一些没有用的插件。
比如:Git Integration、GitHub、Google Cloud Testing、Google Cloud
- 各数据库的批量Update操作
tomcat_oracle
javaoraclesqlmysqlsqlite
MyBatis的update元素的用法与insert元素基本相同,因此本篇不打算重复了。本篇仅记录批量update操作的
sql语句,懂得SQL语句,那么MyBatis部分的操作就简单了。 注意:下列批量更新语句都是作为一个事务整体执行,要不全部成功,要不全部回滚。
MSSQL的SQL语句
WITH R AS(
SELECT 'John' as name, 18 as
- html禁止清除input文本输入缓存
xp9802
input
多数浏览器默认会缓存input的值,只有使用ctl+F5强制刷新的才可以清除缓存记录。如果不想让浏览器缓存input的值,有2种方法:
方法一: 在不想使用缓存的input中添加 autocomplete="off"; eg: <input type="text" autocomplete="off" name