给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]
_______6______ / \ ___2__ ___8__ / \ / \ 0 _4 7 9 / \ 3 5
示例 1:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8 输出: 6 解释: 节点2
和节点8
的最近公共祖先是6。
示例 2:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4 输出: 2 解释: 节点2
和节点4
的最近公共祖先是2
, 因为根据定义最近公共祖先节点可以为节点本身。
说明:
解析:所给的树是一棵二叉搜索树:树中任意节点的左子树中所有元素的值均小于该节点的值,该节点右子树中所有节点的值均大于该节点的值。有了这个条件,就好做一些了,对于p和q,不妨假设p
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def lowestCommonAncestor(self, root, p, q):
"""
:type root: TreeNode
:type p: TreeNode
:type q: TreeNode
:rtype: TreeNode
"""
minn = min(p.val, q.val)
maxn = max(p.val, q.val)
if root is None:
return None
if minn <= root.val <= maxn:
return root
else:
l = self.lowestCommonAncestor(root.left, p, q)
r = self.lowestCommonAncestor(root.right, p, q)
if l:
return l
if r:
return r