雪花算法(SnowFlake)Java实现

雪花算法(SnowFlake)Java实现

算法原理

SnowFlake算法生成id的结果是一个64bit大小的整数,它的结构如下图:

雪花算法(SnowFlake)Java实现_第1张图片

由于在Java中64bit的整数是long类型,所以在Java中SnowFlake算法生成的id就是long来存储的。

SnowFlake可以保证:

所有生成的id按时间趋势递增
整个分布式系统内不会产生重复id(因为有datacenterId和machineId来做区分)

算法实现(Java)

Twitter官方给出的算法实现 是用Scala写的,这里不做分析,可自行查看。

/**
 ** SnowFlake的结构如下(每部分用-分开):
 ** 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 -
 * 000000000000
 ** 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0
 ** 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截)
 ** 得到的值),这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间截,可以使用69年,年T
 * = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69
 ** 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId
** 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号 ** 加起来刚好64位,为一个Long型。 ** * SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生20多万ID左右。 * @author byran **/
public class SnowflakeIdWorker { private static final Logger logger = LoggerFactory.getLogger(SnowflakeIdWorker.class); /** * 起始的时间戳 **/ private final static long START_STMP = 1480166465631L; /** * 每一部分占用的位数 **/ private final static long SEQUENCE_BIT = 10; //序列号占用的位数 private final static long MACHINE_BIT = 5; //机器标识占用的位数 private final static long DATACENTER_BIT = 5;//数据中心占用的位数 /** * 每一部分的最大值 **/ public final static long MAX_DATACENTER_NUM = -1L ^ (-1L << DATACENTER_BIT); public final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT); private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT); /** * 每一部分向左的位移 **/ private final static long MACHINE_LEFT = SEQUENCE_BIT; private final static long DATACENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT; private final static long TIMESTMP_LEFT = DATACENTER_LEFT + DATACENTER_BIT; private long datacenterId; //数据中心 private long machineId; //机器标识 private long sequence = 0L; //序列号 private long lastStmp = -1L;//上一次时间戳 /** * 根据MAC生成datacenterId,根据MAC + PID生成machineId **/ public SnowflakeIdWorker() { long datacenterId = getDatacenterId(MAX_DATACENTER_NUM); long machineId = getMachineId(datacenterId, MAX_MACHINE_NUM); check(datacenterId, machineId); this.datacenterId = datacenterId; this.machineId = machineId; } /** * datacenterId和machineId可配置 * @param datacenterId * @param machineId **/ public SnowflakeIdWorker(long datacenterId, long machineId) { check(datacenterId, machineId); this.datacenterId = datacenterId; this.machineId = machineId; } private static void check(long datacenterId, long machineId) { if (datacenterId > MAX_DATACENTER_NUM || datacenterId < 0) { throw new EompRuntimeException(String.format("datacenterId can't be greater than %s or less than 0", MAX_DATACENTER_NUM)); } if (machineId > MAX_MACHINE_NUM || machineId < 0) { throw new EompRuntimeException(String.format("machineId can't be greater than %s or less than 0", MAX_MACHINE_NUM)); } } /** * 产生下一个ID * @return **/ public synchronized long nextId() { long currStmp = getNewstmp(); if (currStmp < lastStmp) { throw new EompRuntimeException("Clock moved backwards. Refusing to generate id"); } if (currStmp == lastStmp) { //相同毫秒内,序列号自增 sequence = (sequence + 1) & MAX_SEQUENCE; //同一毫秒的序列数已经达到最大 if (sequence == 0L) { currStmp = getNextMill(); } } else { //不同毫秒内,序列号置为0 sequence = 0L; } lastStmp = currStmp; return (currStmp - START_STMP) << TIMESTMP_LEFT //时间戳部分 | datacenterId << DATACENTER_LEFT //数据中心部分 | machineId << MACHINE_LEFT //机器标识部分 | sequence; //序列号部分 } /** * 阻塞到下一个毫秒,直到获得新的时间戳 * @return 当前时间戳 **/ private long getNextMill() { long mill = getNewstmp(); while (mill <= lastStmp) { mill = getNewstmp(); } return mill; } /** * 返回以毫秒为单位的当前时间 * @return 当前时间(毫秒) **/ private long getNewstmp() { return System.currentTimeMillis(); } /** * 机器标识 **/ private static long getMachineId(long datacenterId, long maxWorkerId) { StringBuilder mpid = new StringBuilder(); mpid.append(datacenterId); String name = ManagementFactory.getRuntimeMXBean().getName(); if (!name.isEmpty()) { /** GET jvmPid */ mpid.append(name.split("@")[0]); } /** MAC + PID 的 hashcode 获取16个低位 */ return (mpid.toString().hashCode() & 0xffff) % (maxWorkerId + 1); } /** * 数据标识id部分 **/ private static long getDatacenterId(long maxDatacenterId) { long id = 0L; try { InetAddress ip = InetAddress.getLocalHost(); NetworkInterface network = NetworkInterface.getByInetAddress(ip); if (network == null) { id = 1L; } else { byte[] mac = network.getHardwareAddress(); id = ((0x000000FF & (long) mac[mac.length - 1]) | (0x0000FF00 & (((long) mac[mac.length - 2]) << 8))) >> 6; id = id % (maxDatacenterId + 1); } } catch (Exception e) { logger.error("getDatacenterId exception.", e); } return id; } /*public static void main(String[] args) { long datacenterId = getDatacenterId(MAX_DATACENTER_NUM); long machineId = getMachineId(datacenterId, MAX_MACHINE_NUM); System.out.println("ip:" + datacenterId + ",processId:" + machineId); }*/ }

测试类:

public class SnowflakeIdWorkerTest {
  public static Set<Long> idSet = new HashSet<>();

  public static void main(String[] args) {
    SnowflakeIdWorker snowflakeIdWorker = new SnowflakeIdWorker(1, 0);
    for (long i = 0; i < 1000; i++) {
      new Thread(new Worker(snowflakeIdWorker)).start();
    }
  }

  static class Worker implements Runnable {
    private SnowflakeIdWorker snowflakeIdWorker;

    public Worker(SnowflakeIdWorker snowflakeIdWorker) {
      this.snowflakeIdWorker = snowflakeIdWorker;
    }

    @Override
    public void run() {
      for (int i = 0; i < 1000; i++) {
        Long id = snowflakeIdWorker.nextId();
        if (!idSet.add(id)) {
          System.err.println("存在重复id:" + id);
        }
      }
    }
  }
}

你可能感兴趣的:(Java)