概率论基础-严士健 第二版 习题与补充5.2答案

概率论基础-严士健 第二版
习题与补充5.2答案
1.若将 ξ n → ξ , P − a . e . \xi_n \to \xi, P-a.e. ξnξ,Pa.e.改成 ξ n → P ξ \xi_n \overset{P}{\to} \xi ξnPξ结论同样成立。
ξ n → P ξ \xi_n \overset{P}{\to} \xi ξnPξ 等价于 存在子列 n k n_k nk,使得 n k n_k nk的子列 n k j n_{k_j} nkj ξ n k j → a . e . ξ \xi_{n_{k_j}} \overset{a.e.}{\to} \xi ξnkja.e.ξ.证明过程类似。
2.相当于证明 ∀ B ∈ C , ∫ B g ( E ( ξ ∣ C ) ) ≤ ∫ B E ( g ( ξ ) ∣ C ) \forall B \in \mathscr{C}, \int_B g(E(\xi|\mathscr{C})) \leq \int_B E(g(\xi)|\mathscr{C}) BC,Bg(E(ξC))BE(g(ξ)C),由于 g g g是凸数,则 E [ g ( E ( ξ ∣ C ) ) ] ≤ E [ E g ( ξ ) ∣ C ] = E g ( ξ ) E[g(E(ξ∣C))] \leq E[Eg(ξ)∣C] =Eg(ξ) E[g(E(ξC))]E[Eg(ξ)C]=Eg(ξ).
3.i) ∀ B ∈ C ⊂ C ′ , ∫ B E ( ξ ξ ′ ∣ C ) = ∫ B ξ ξ ′ = ∫ B E ( ξ ξ ′ ∣ C ′ ) = ∫ B ξ ′ E ( ξ ∣ C ′ ) = ∫ B E ( ξ ′ E ( ξ ∣ C ′ ) ∣ C ) . \forall B \in \mathscr{C} \subset \mathscr{C}', \int_B E(\xi \xi'|\mathscr{C}) = \int_B \xi \xi' = \int_B E(\xi \xi'|\mathscr{C}') = \int_B \xi' E(\xi|\mathscr{C}') = \int_BE( \xi' E(\xi|\mathscr{C}')|\mathscr{C}). BCC,BE(ξξC)=Bξξ=BE(ξξC)=BξE(ξC)=BE(ξE(ξC)C).
ii)
4. ∀ n 和 m ≤ n , E ( ξ n ∣ A m ) = E ( ∑ k = 1 n η k ∣ A m ) = ∑ k = 1 m η k + E ( ∑ k = m + 1 n η k ∣ A m ) = ∑ k = 1 m η k + E ( ∑ k = m + 1 n η k ) = ( ≥ ) ∑ k = 1 m η k = ξ m . \forall n和m \leq n, E(\xi_n| \mathscr{A}_m) = E(\sum_{k=1}^n \eta_k| \mathscr{A}_m) = \sum_{k=1}^m \eta_k + E(\sum_{k=m+1}^n \eta_k| \mathscr{A}_m)= \sum_{k=1}^m \eta_k + E(\sum_{k=m+1}^n \eta_k) =(\geq) \sum_{k=1}^m \eta_k = \xi_m. nmn,E(ξnAm)=E(k=1nηkAm)=k=1mηk+E(k=m+1nηkAm)=k=1mηk+E(k=m+1nηk)=()k=1mηk=ξm.

你可能感兴趣的:(概率论基础,严士健,习题与补充)