雪花算法的基本理念和简单示例

雪花算法

1、 背景
分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的。

有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成。

而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移到Cassandra,因为Cassandra没有顺序ID生成机制,为了满足Twitter每秒上万条消息的请求,每条消息都必须分配一条唯一的id,这些id还需要一些大致的顺序(方便客户端排序),并且在分布式系统中不同机器产生的id必须不同,所以twitter开发了这样一套全局唯一ID生成服务。


2、Snowflake算法核心

  • SnowFlake的结构如下(每部分用-分开): 把时间戳,工作机器id,序列号组合在一起。
    雪花算法的基本理念和简单示例_第1张图片

*1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0

*41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间截,而是存储时间截的差值(当前时间截 - 开始时间截) 后得到的值,这里的的开始时间截,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间截,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69

10位的数据机器位,可以部署在1024个节点,包括10位workerId

12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号

加起来刚好64位,为一个Long型。

snowflake
除了最高位bit标记为不可用以外,其余三组bit占位均可浮动,看具体的业务需求而定。默认情况下41bit的时间戳可以支持该算法使用到2082年,10bit的工作机器id可以支持1023台机器,序列号支持1毫秒产生4095个自增序列id。下文会具体分析。

  • SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。

2.1 Snowflake – 时间戳
这里时间戳的细度是毫秒级,具体代码如下,建议使用64位linux系统机器,因为有vdso,gettimeofday()在用户态就可以完成操作,减少了进入内核态的损耗。
雪花算法的基本理念和简单示例_第2张图片
默认情况下有41个bit可以供使用,那么一共有T(1llu << 41)毫秒供你使用分配,年份 = T / (3600 * 24 * 365 * 1000) = 69.7年。如果你只给时间戳分配39个bit使用,那么根据同样的算法最后年份 = 17.4年。
2. 2 Snowflake – 工作机器id
严格意义上来说这个bit段的使用可以是进程级,机器级的话你可以使用MAC地址来唯一标示工作机器,工作进程级可以使用IP+Path来区分工作进程。如果工作机器比较少,可以使用配置文件来设置这个id是一个不错的选择,如果机器过多配置文件的维护是一个灾难性的事情。
这里的解决方案是需要一个工作id分配的进程,可以使用自己编写一个简单进程来记录分配id,或者利用Mysql auto_increment机制也可以达到效果。

雪花算法的基本理念和简单示例_第3张图片

工作进程与工作id分配器只是在工作进程启动的时候交互一次,然后工作进程可以自行将分配的id数据落文件,下一次启动直接读取文件里的id使用。
PS:这个工作机器id的bit段也可以进一步拆分,比如用前5个bit标记进程id,后5个bit标记线程id之类:D
2.3 Snowflake – 序列号
序列号就是一系列的自增id(多线程建议使用atomic),为了处理在同一毫秒内需要给多条消息分配id,若同一毫秒把序列号用完了,则“等待至下一毫秒”。
雪花算法的基本理念和简单示例_第4张图片

总体来说,是一个很高效很方便的GUID产生算法,一个int64_t字段就可以胜任,不像现在主流128bit的GUID算法,即使无法保证严格的id序列性,但是对于特定的业务,比如用做游戏服务器端的GUID产生方便。另外,在多线程的环境下,序列号使用atomic可以在代码实现上有效减少锁的密度。

3、Snowflake - 算法实现

public class SnowFlake {

    /**
    * 起始的时间戳
    */
    private final static long START_STMP = 1480166465631L;
  
    /**
    * 每一部分占用的位数
    */
    private final static long SEQUENCE_BIT = 12; //序列号占用的位数
    private final static long MACHINE_BIT = 5;  //机器标识占用的位数
    private final static long DATACENTER_BIT = 5;//数据中心占用的位数
  
    /**
    * 每一部分的最大值
    */
    private final static long MAX_DATACENTER_NUM = -1L ^ (-1L << DATACENTER_BIT);
    private final static long MAX_MACHINE_NUM = -1L ^ (-1L << MACHINE_BIT);
    private final static long MAX_SEQUENCE = -1L ^ (-1L << SEQUENCE_BIT);
  
    /**
    * 每一部分向左的位移
    */
    private final static long MACHINE_LEFT = SEQUENCE_BIT;
    private final static long DATACENTER_LEFT = SEQUENCE_BIT + MACHINE_BIT;
    private final static long TIMESTMP_LEFT = DATACENTER_LEFT + DATACENTER_BIT;
  
    private long datacenterId;  //数据中心
    private long machineId;    //机器标识
    private long sequence = 0L; //序列号
    private long lastStmp = -1L;//上一次时间戳
  
    public SnowFlake(long datacenterId, long machineId) {
        if (datacenterId > MAX_DATACENTER_NUM || datacenterId < 0) {
            throw new IllegalArgumentException("datacenterId can't be greater than MAX_DATACENTER_NUM or less than 0");
        }
        if (machineId > MAX_MACHINE_NUM || machineId < 0) {
            throw new IllegalArgumentException("machineId can't be greater than MAX_MACHINE_NUM or less than 0");
        }
        this.datacenterId = datacenterId;
        this.machineId = machineId;
    }
  
    /**
    * 产生下一个ID
    *
    * @return
    */
    public synchronized long nextId() {
        long currStmp = getNewstmp();
        if (currStmp < lastStmp) {
            throw new RuntimeException("Clock moved backwards.  Refusing to generate id");
        }
  
        if (currStmp == lastStmp) {
            //相同毫秒内,序列号自增
            sequence = (sequence + 1) & MAX_SEQUENCE;
            //同一毫秒的序列数已经达到最大
            if (sequence == 0L) {
                currStmp = getNextMill();
            }
        } else {
            //不同毫秒内,序列号置为0
            sequence = 0L;
        }
  
        lastStmp = currStmp;
  
        return (currStmp - START_STMP) << TIMESTMP_LEFT //时间戳部分
                | datacenterId << DATACENTER_LEFT      //数据中心部分
                | machineId << MACHINE_LEFT            //机器标识部分
                | sequence;                            //序列号部分
    }
  
    private long getNextMill() {
        long mill = getNewstmp();
        while (mill <= lastStmp) {
            mill = getNewstmp();
        }
        return mill;
    }
  
    private long getNewstmp() {
        return System.currentTimeMillis();
    }
}


小测试代码: 
public class SnowFlakeTest {
	public static void main(String[] args) {
        SnowFlake snowFlake = new SnowFlake(2, 3);
        for (int i = 0; i < (1 << 12); i++) {
            System.out.println(snowFlake.nextId());
        }
	}
}

你可能感兴趣的:(新技术学习)