雪花算法详解

前言

雪花算法是用来在分布式场景下生成唯一ID的。


叙述

算法详解雪花算法详解_第1张图片

雪花算法简单描述:
+ 最高位是符号位,始终为0,不可用。
+ 41位的时间序列,精确到毫秒级,41位的长度可以使用69年。时间位还有一个很重要的作用是可以根据时间进行排序。
+ 10位的机器标识,10位的长度最多支持部署1024个节点。
+ 12位的计数序列号,序列号即一系列的自增id,可以支持同一节点同一毫秒生成多个ID序号,12位的计数序列号支持每个节点每毫秒产生4096个ID序号。


代码实例

package com.dmsdbj.cloud.tool.uuid;

import lombok.ToString;

/**
 * @DESCRIPTION 雪花算法生成器
 * @author sunshine
 * @date 2018年11月23日15:33:39
 */
@ToString
public class SnowflakeIdFactory {
    /**
     * 雪花算法解析 结构 snowflake的结构如下(每部分用-分开):
     * 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000
     * 第一位为未使用,接下来的41位为毫秒级时间(41位的长度可以使用69年),然后是5位datacenterId和5位workerId(10
     * 位的长度最多支持部署1024个节点) ,最后12位是毫秒内的计数(12位的计数顺序号支持每个节点每毫秒产生4096个ID序号)
     *
     * 一共加起来刚好64位,为一个Long型。(转换成字符串长度为18)
     *
     **/

    /** 开始时间截 (2015-01-01) */
    private final long twepoch = 1288834974657L;
    /** 机器id所占的位数 */
    private final long workerIdBits = 5L;
    /** 数据标识id所占的位数 */
    private final long datacenterIdBits = 5L;
    /** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */
    private final long maxWorkerId = -1L ^ (-1L << workerIdBits);
    /** 支持的最大数据标识id,结果是31 */
    private final long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
    /** 序列在id中占的位数 */
    private final long sequenceBits = 12L;
    /** 机器ID向左移12位 */
    private final long workerIdShift = sequenceBits;
    /** 数据标识id向左移17位(12+5) */
    private final long datacenterIdShift = sequenceBits + workerIdBits;
    /** 时间截向左移22位(5+5+12) */
    private final long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    /** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095) */
    private final long sequenceMask = -1L ^ (-1L << sequenceBits);
    /** 工作机器ID(0~31) */
    private long workerId;
    /** 数据中心ID(0~31) */
    private long datacenterId;
    /** 毫秒内序列(0~4095) */
    private long sequence = 0L;
    /** 上次生成ID的时间截 */
    private long lastTimestamp = -1L;

    public SnowflakeIdFactory() {
        this.datacenterId = maxDatacenterId;
        this.workerId = maxWorkerId;
    }

    /**
     * 构造函数
     * @param workerId 工作ID (0~31)
     * @param datacenterId 数据中心ID (0~31)
     */
    public SnowflakeIdFactory(long workerId, long datacenterId) {
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
        }
        this.workerId = workerId;
        this.datacenterId = datacenterId;
    }

    /**
     * 获得下一个ID (该方法是线程安全的)
     * @return SnowflakeId
     */
    public synchronized long nextId() {
        long timestamp = timeGen();
        // 如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
        if (timestamp < lastTimestamp) {
            //服务器时钟被调整了,ID生成器停止服务.
            throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }

        // 如果是同一时间生成的,则进行毫秒内序列
        // sequenceMask 为啥是4095  2^12 = 4096
        if (lastTimestamp == timestamp) {
            // 每次+1
            sequence = (sequence + 1) & sequenceMask;
            // 毫秒内序列溢出
            if (sequence == 0) {
                // 阻塞到下一个毫秒,获得新的时间戳
                timestamp = tilNextMillis(lastTimestamp);
            }
        }
        // 时间戳改变,毫秒内序列重置
        else {
            sequence = 0L;
        }

        // 上次生成ID的时间截
        lastTimestamp = timestamp;
        return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift) | (workerId << workerIdShift) | sequence;
    }

    /**
     * 阻塞到下一个毫秒,直到获得新的时间戳
     * @param lastTimestamp 上次生成ID的时间截
     * @return 当前时间戳
     */
    protected long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }

    /**
     * 返回以毫秒为单位的当前时间
     * @return 当前时间(毫秒)
     */
    protected long timeGen() {
        return System.currentTimeMillis();
    }

    public static void main(String[] args) {
//        log.info("开始生成id");
        System.out.println(System.currentTimeMillis());
        SnowflakeIdFactory idWorker = new SnowflakeIdFactory(1, 1);
        long startTime = System.nanoTime();
        for (int i = 0; i < 50000; i++) {
            long id = idWorker.nextId();
            System.out.println(id);
        }
        System.out.println((System.nanoTime() - startTime) / 1000000 + "ms");
    }
}

解疑

问题1:twepoch 为什么要等于1288834974657L 而不等于其他数

答: 1288834974657 是 (Thu, 04 Nov 2010 01:42:54 GMT) 这一时刻到1970-01-01 00:00:00时刻所经过的毫秒数。41位字节作为时间戳数值的话,大约68年就会用完,假如你2010年1月1日开始开发系统,如果不减去2010年1月1日的时间戳,那么白白浪费40年的时间戳啊!所有减去twepoch 可以让系统在41位字节作为时间戳的情况下的运行时间更长。1288834974657L可能就是该项目开始成立的时间。

问题2:类似这种long maxWorkerId = -1L ^ (-1L << workerIdBits);操作是什么意思?

答: -1L ^ (-1L << n)表示占n个bit的数字的最大值是多少。举个栗子:-1L ^ (-1L << 2)等于10进制的3 ,即二进制的11表示十进制3。

注意:计算机存放数字都是存放数字的补码,正数的原码、补码、反码都一样,负数的补码是其反码加一。符号位做取反操作时不变,做逻辑与、或、非、异或操作时要参与运算。

再来个栗子:
-1L原码 : 1000 0001
-1L反码 : 1111 1110
-1L补码 : 1111 1111
-1L<<5 : 1110 0000
1111 1111 ^ 1110 0000 : 0001 1111
0001 1111是正数,所以补码、反码、原码都一样,所以0001 1111是31

问题3:代码意思不明白

((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift) | (workerId << workerIdShift) | sequence

雪花算法详解_第2张图片

小结

雪花算法是一个经典的ID生成器的算法,可以学习了解一下.

感谢您的阅读~~

你可能感兴趣的:(雪花算法详解)