接口限流算法及Redis:漏桶算法&令牌桶算法

工作中对外提供的API 接口设计都要考虑限流,如果不考虑限流,会成系统的连锁反应,轻者响应缓慢,重者系统宕机,整个业务线崩溃,如何应对这种情况呢,我们可以对请求进行引流或者直接拒绝等操作,保持系统的可用性和稳定性,防止因流量暴增而导致的系统运行缓慢或宕机。

在开发高并发系统时有三把利器用来保护系统:缓存、降级和限流

缓存:缓存的目的是提升系统访问速度和增大系统处理容量
降级:降级是当服务器压力剧增的情况下,根据当前业务情况及流量对一些服务和页面有策略的降级,以此释放服务器资源以保证核心任务的正常运行
限流:限流的目的是通过对并发访问/请求进行限速,或者对一个时间窗口内的请求进行限速来保护系统,一旦达到限制速率则可以拒绝服务、排队或等待、降级等处理

限流算法

常用的限流算法有令牌桶和和漏桶而Google开源项目Guava中的RateLimiter使用的就是令牌桶控制算法。

漏桶算法

把请求比作是水,水来了都先放进桶里,并以限定的速度出水,当水来得过猛而出水不够快时就会导致水直接溢出,即拒绝服务。

 

接口限流算法及Redis:漏桶算法&令牌桶算法_第1张图片

 

 

漏斗有一个进水口 和 一个出水口,出水口以一定速率出水,并且有一个最大出水速率:

在漏斗中没有水的时候,

  • 如果进水速率小于等于最大出水速率,那么,出水速率等于进水速率,此时,不会积水
  • 如果进水速率大于最大出水速率,那么,漏斗以最大速率出水,此时,多余的水会积在漏斗中

在漏斗中有水的时候

  • 出水口以最大速率出水
  • 如果漏斗未满,且有进水的话,那么这些水会积在漏斗中
  • 如果漏斗已满,且有进水的话,那么这些水会溢出到漏斗之外

 

 

import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

/**
 * 漏斗限流算法
 *
 * @author dadiyang
 * @date 2018/9/28
 */
public class FunnelRateLimiter {
    private Map funnelMap = new ConcurrentHashMap<>();
    
    public static void main(String[] args) throws InterruptedException {
        FunnelRateLimiter limiter = new FunnelRateLimiter();
        int testAccessCount = 30;
        int capacity = 5;
        int allowQuota = 5;
        int perSecond = 30;
        int allowCount = 0;
        int denyCount = 0;
        for (int i = 0; i < testAccessCount; i++) {
            boolean isAllow = limiter.isActionAllowed("dadiyang", "doSomething", 5, 5, 30);
            if (isAllow) {
                allowCount++;
            } else {
                denyCount++;
            }
            System.out.println("访问权限:" + isAllow);
            Thread.sleep(1000);
        }
        System.out.println("报告:");
        System.out.println("漏斗容量:" + capacity);
        System.out.println("漏斗流动速率:" + allowQuota + "次/" + perSecond + "秒");

        System.out.println("测试次数=" + testAccessCount);
        System.out.println("允许次数=" + allowCount);
        System.out.println("拒绝次数=" + denyCount);
    }

    /**
     * 根据给定的漏斗参数检查是否允许访问
     *
     * @param username   用户名
     * @param action     操作
     * @param capacity   漏斗容量
     * @param allowQuota 每单个单位时间允许的流量
     * @param perSecond  单位时间(秒)
     * @return 是否允许访问
     */
    public boolean isActionAllowed(String username, String action, int capacity, int allowQuota, int perSecond) {
        String key = "funnel:" + action + ":" + username;
        if (!funnelMap.containsKey(key)) {
            funnelMap.put(key, new Funnel(capacity, allowQuota, perSecond));
        }
        Funnel funnel = funnelMap.get(key);
        return funnel.watering(1);
    }

    private static class Funnel {
        private int capacity;
        private float leakingRate;
        private int leftQuota;
        private long leakingTs;

        public Funnel(int capacity, int count, int perSecond) {
            this.capacity = capacity;
            // 因为计算使用毫秒为单位的
            perSecond *= 1000;
            this.leakingRate = (float) count / perSecond;
        }

        /**
         * 根据上次水流动的时间,腾出已流出的空间
         */
        private void makeSpace() {
            long now = System.currentTimeMillis();
            long time = now - leakingTs;
            int leaked = (int) (time * leakingRate);
            if (leaked < 1) {
                return;
            }
            leftQuota += leaked;
            // 如果剩余大于容量,则剩余等于容量
            if (leftQuota > capacity) {
                leftQuota = capacity;
            }
            leakingTs = now;
        }

        /**
         * 漏斗漏水
         *
         * @param quota 流量
         * @return 是否有足够的水可以流出(是否允许访问)
         */
        public boolean watering(int quota) {
            makeSpace();
            int left = leftQuota - quota;
            if (left >= 0) {
                leftQuota = left;
                return true;
            }
            return false;
        }
    }
}

令牌桶算法

对于很多应用场景来说,除了要求能够限制数据的平均传输速率外,还要求允许某种程度的突发传输。这时候漏桶算法可能就不合适了,令牌桶算法更为适合。

令牌桶算法的原理是系统以恒定的速率产生令牌,然后把令牌放到令牌桶中,令牌桶有一个容量,当令牌桶满了的时候,再向其中放令牌,那么多余的令牌会被丢弃;当想要处理一个请求的时候,需要从令牌桶中取出一个令牌,如果此时令牌桶中没有令牌,那么则拒绝该请求。

 

接口限流算法及Redis:漏桶算法&令牌桶算法_第2张图片接口限流算法及Redis:漏桶算法&令牌桶算法_第3张图片

RateLimiter 用法

https://github.com/google/guava

添加依赖


  com.google.guava
  guava
  26.0-jre
  
  26.0-android

public class Test {

    public static void main(String[] args) {
        ListeningExecutorService executorService = MoreExecutors.listeningDecorator(Executors.newFixedThreadPool(100));
        // 指定每秒放1个令牌
  RateLimiter limiter = RateLimiter.create(1);
        for (int i = 1; i < 50; i++) {
            // 请求RateLimiter, 超过permits会被阻塞
  //acquire(int permits)函数主要用于获取permits个令牌,并计算需要等待多长时间,进而挂起等待,并将该值返回
  Double acquire = null;
            if (i == 1) {
                acquire = limiter.acquire(1);
            } else if (i == 2) {
                acquire = limiter.acquire(10);
            } else if (i == 3) {
                acquire = limiter.acquire(2);
            } else if (i == 4) {
                acquire = limiter.acquire(20);
            } else {
                acquire = limiter.acquire(2);
            }
            executorService.submit(new Task("获取令牌成功,获取耗:" + acquire + " 第 " + i + " 个任务执行"));
        }
    }
}
class Task implements Runnable {
    String str;
    public Task(String str) {
        this.str = str;
    }
    @Override
  public void run() {
        SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss.SSS");
        System.out.println(sdf.format(new Date()) + " | " + Thread.currentThread().getName() + str);
    }
}

响应

2018-08-11 00:26:22.953 | pool-1-thread-1获取令牌成功,获取耗:0.0 第 1 个任务执行
2018-08-11 00:26:23.923 | pool-1-thread-2获取令牌成功,获取耗:0.98925 第 2 个任务执行
2018-08-11 00:26:33.920 | pool-1-thread-3获取令牌成功,获取耗:9.996993 第 3 个任务执行
2018-08-11 00:26:35.920 | pool-1-thread-4获取令牌成功,获取耗:1.999051 第 4 个任务执行
2018-08-11 00:26:55.920 | pool-1-thread-5获取令牌成功,获取耗:19.999726 第 5 个任务执行
2018-08-11 00:26:57.920 | pool-1-thread-6获取令牌成功,获取耗:1.999139 第 6 个任务执行
2018-08-11 00:26:59.920 | pool-1-thread-7获取令牌成功,获取耗:1.999806 第 7 个任务执行
2018-08-11 00:27:01.919 | pool-1-thread-8获取令牌成功,获取耗:1.999433 第 8 个任务执行

acquire函数主要用于获取permits个令牌,并计算需要等待多长时间,进而挂起等待,并将该值返回

一个RateLimiter主要定义了发放permits的速率。如果没有额外的配置,permits将以固定的速度分配,单位是每秒多少permits。默认情况下,Permits将会被稳定的平缓的发放。

预消费能力

从输出结果可以看出,指定每秒放1个令牌,RateLimiter具有预消费的能力:

acquire 1 时,并没有任何等待 0.0 秒 直接预消费了1个令牌
acquire 10时,由于之前预消费了 1 个令牌,故而等待了1秒,之后又预消费了10个令牌
acquire 2 时,由于之前预消费了 10 个令牌,故而等待了10秒,之后又预消费了2个令牌
acquire 20 时,由于之前预消费了 2 个令牌,故而等待了2秒,之后又预消费了20个令牌
acquire 2 时,由于之前预消费了 20 个令牌,故而等待了20秒,之后又预消费了2个令牌
acquire 2 时,由于之前预消费了 2 个令牌,故而等待了2秒,之后又预消费了2个令牌
acquire 2 时 …

通俗的讲「前人_挖坑_后人跳」,也就说上一次请求获取的permit数越多,那么下一次再获取授权时更待的时候会更长,反之,如果上一次获取的少,那么时间向后推移的就少,下一次获得许可的时间更短。可见,都是有代价的。正所谓:要浪漫就要付出代价。马上就七夕了,浪漫的代价可能要花钱啊,单身狗们。

令牌桶算法VS漏桶算法

漏桶

漏桶的出水速度是恒定的,那么意味着如果瞬时大流量的话,将有大部分请求被丢弃掉(也就是所谓的溢出)。

令牌桶

生成令牌的速度是恒定的,而请求去拿令牌是没有速度限制的。这意味,面对瞬时大流量,该算法可以在短时间内请求拿到大量令牌,而且拿令牌的过程并不是消耗很大的事情。

最后

不论是对于令牌桶拿不到令牌被拒绝,还是漏桶的水满了溢出,都是为了保证大部分流量的正常使用,而牺牲掉了少部分流量,这是合理的,如果因为极少部分流量需要保证的话,那么就可能导致系统达到极限而挂掉,得不偿失。

本文讲的单机的限流,是JVM级别的的限流,所有的令牌生成都是在内存中,在分布式环境下不能直接这么用,可用使redis限流。

 

 

第一种:根据时间滑动

介绍:比如统计每5秒内最高请求量是1000,那这个5秒是滑动的,从0到5秒,1到6秒,2到7秒以此类推最大请求量都是1000。要实现这种滑动的限流需要用到redis的zset结构。zset是一个有序的集合,uuid作为值,时间作为排序的分数,根据rangeByScore命令对时间进行排序,然后取出当前时间段内的请求量,红色部分是当前时间减去滑动窗口的时间。下面的代码是:每秒最多5个请求。

 

接口限流算法及Redis:漏桶算法&令牌桶算法_第4张图片

第二种:redis的list集合做令牌桶算法

介绍:令牌桶算法也称水桶算法,水桶算法意思是往水桶里面加水,然后再取水,如果取水速度大于加水速度就取不到水了,只能空手而归。我们现在往redis的list集合里面加元素,然后请求过来的时候从list里面取元素,取到了就继续执行任务,取不到就返回。

 

接口限流算法及Redis:漏桶算法&令牌桶算法_第5张图片

具体实现如下:这个是取令牌没有取到说明请求量过大,leftPop命令是取出数据,并且删除

 

接口限流算法及Redis:漏桶算法&令牌桶算法_第6张图片

放令牌可以用task实现,最好有个配置平台根据当前流量,服务器情况实现动态控制。rightPush是从右侧插入数据。

 

接口限流算法及Redis:漏桶算法&令牌桶算法_第7张图片

第三种:redis实现漏斗算法,它也是用list实现的。

https://www.jianshu.com/p/127a3bc6e85b

https://blog.csdn.net/dadiyang/article/details/82887663

介绍:漏斗算法和水桶算法的思想刚好相反,一直往木桶里加水,水桶下面有个洞,一直往外流水,加水速度大于漏水速度水就会满,这个时候就不能再加了。有请求过来一直往list里加内容,我们再取内容,请求速度大于取出速度就返回了。

如何实现呢?哈哈大家有兴趣自己想想怎么实现吧

你可能感兴趣的:(------【Redis】,------【数据结构与算法】)