车羊问题的一种简洁证明

在csdn上看到一篇关于车羊问题的文章(http://blog.csdn.net/naturebe/article/details/7272232),我编了个程序证明了结论,然后给出了一种简洁的数学证明。如下:

   车羊问题(Car and Goats problem)又叫蒙提霍尔问题(Monty Hall Problem)或三门问题。这个问题来源于美国电视娱乐节目Let’s Make a Deal,问题的名字则来自该节目的主持人蒙提·霍尔(Monty Hall)。问题是这样的:参赛者会看见三扇关闭了的门,其中一扇的后面有一辆汽车,选中后面有车的那扇门就可以赢得该汽车,而另外两扇门后面则各藏有一只山羊。当参赛者选定了一扇门,但未去开启它的时候,节目主持人会开启剩下两扇门的其中一扇,露出其中一只山羊。主持人其后会问参赛者要不要换另一扇仍然关上的门。明确的限制条件如下:参赛者会被问是否保持他的原来选择,还是转而选择剩下的那一道 那么换与不换,哪种策略答对的机率高呢?

   思考了一下,感觉换的概率可能是1/3,1/2,2/3,无法确定,于是写个程序找到正确答案先:
程序证明

	static Random random1 = new Random();
	static Random random2 = new Random();
	static Random random3 = new Random();
	static int COUNT = 100000000;

	public static void main(String[] args) {
		//whether re-choise after prompt. 
		boolean retry = true;
		int got = 0;
		for (int i = 0; i < COUNT; i++) {
			int[] data = generateData();
			int c = Math.abs(random2.nextInt()) % 3;
			if (retry) {
				int p = prompt(data, c);
				int choise = excluse(c, p);
				got += data[choise];
			} else {
				got += data[c];
			}
		}
		System.out.println("retry:" + retry + ",got car:" + got + ",count="
				+ COUNT + ",probability=" + got * 1.0 / COUNT);
	}

	static int excluse(int c, int p) {
		if (c + p == 1) {
			return 2;
		} else if (c + p == 2) {
			return 1;
		} else if (c + p == 3) {
			return 0;
		}
		return -1;
	}
	
	static int prompt(int[] data, int c) {
		int[] choise = new int[2];
		int j = 0;
		for (int i = 0; i < data.length; i++) {
			if (i != c) {
				if (data[i] == 1)// car
					choise[j++] = -1;
				else
					choise[j++] = i;
			}
		}
		if (choise[0] >= 0 && choise[1] >= 0) {// c is not car
			return choise[Math.abs(random3.nextInt()) % 2];
		} else if (choise[0] < 0) {
			return choise[1];
		} else {
			return choise[0];
		}
	}
	/**
	 * 1 for car,0 for goat
	 */
	static int[] generateData() {
		int[] data = new int[3];
		data[Math.abs(random1.nextInt()) % 3] = 1;
		return data;
	}


上面的程序,当把retry设成true和false,count设成1亿,得到的输出分别是:
// retry:true,got car:66671490,count=100000000,probability=0.6667149
// retry:false,got car:33331411,count=100000000,probability=0.33331411
从而从程序的角度证明:不换获得车的概率是1/3;换,获得车的概率是2/3.

数学证明
其实用逆推法很容易得出2/3的结论,仔细思考一下,就会发现:
   参赛者换了门而且获得了车, 当且仅当参赛者第一次选择的门后面是羊。根据 等价事件的概率相等的数学原理,问题转换成参赛者第一此选择的门后是羊的概率,也就是2/3.

你可能感兴趣的:(java,car)