Python常用查找算法

1.无序表查找:数据不排序的线性查找,遍历数据元素

def sequential_search(slist, key):
    for i in xrange(len(slist)):
        if slist[i] == key:
            return i
    return -1

sindex = sequential_search([1,3,4,7,5,8,2,9,6], 3)
print sindex

2.二分查找:查找表中不断取中间元素与查找值进行比较,以二分之一的倍率进行表范围的缩小

def middle_search(mlist,value):
    if value > mlist[-1] or value < mlist[0]:
        return -1
    else:
        start,end = 0,len(mlist)
        while start < end:
            middle = (start+end)/2
            if mlist[middle] == value:
                return middle
            elif mlist[middle] > value:
                end = middle
            else:
                start = middle
        return -1

mindex = middle_search([1,2,3,4,5,6,7,8,9], 1)
print mindex

3.二叉排序树:二叉排序树又称为二叉查找树;若它的左子树不为空,则左子树上所有节点的值均小于它的根结构的值;若它的右子树不为空,则右子树上所有节点的值均大于它的根结构的值;它的左、右子树也分别为二叉排序树

# -*- coding:utf-8 -*-

class BSTNode:
    """
    定义一个二叉树节点类。
    以讨论算法为主,忽略了一些诸如对数据类型进行判断的问题。
    """
    def __init__(self, data, left=None, right=None):
        """
        初始化
        :param data: 节点储存的数据
        :param left: 节点左子树
        :param right: 节点右子树
        """
        self.data = data
        self.left = left
        self.right = right

class BinarySortTree:
    """
    基于BSTNode类的二叉排序树。维护一个根节点的指针。
    """
    def __init__(self):
        self._root = None

    def is_empty(self):
        return self._root is None

    def search(self, key):
        """
        关键码检索
        :param key: 关键码
        :return: 查询节点或None
        """
        bt = self._root
        while bt:
            entry = bt.data
            if key < entry:
                bt = bt.left
            elif key > entry:
                bt = bt.right
            else:
                return entry
        return None

    def insert(self, key):
        """
        插入操作
        :param key:关键码 
        :return: 布尔值
        """
        bt = self._root
        if not bt:
            self._root = BSTNode(key)
            return
        while True:
            entry = bt.data
            if key < entry:
                if bt.left is None:
                    bt.left = BSTNode(key)
                    return
                bt = bt.left
            elif key > entry:
                if bt.right is None:
                    bt.right = BSTNode(key)
                    return
                bt = bt.right
            else:
                bt.data = key
                return

    def delete(self, key):
        """
        二叉排序树最复杂的方法
        :param key: 关键码
        :return: 布尔值
        """
        p, q = None, self._root     # 维持p为q的父节点,用于后面的链接操作
        if not q:
            print("空树!")
            return
        while q and q.data != key:
            p = q
            if key < q.data:
                q = q.left
            else:
                q = q.right
            if not q:               # 当树中没有关键码key时,结束退出。
                return
        # 上面已将找到了要删除的节点,用q引用。而p则是q的父节点或者None(q为根节点时)。
        if not q.left:
            if p is None:
                self._root = q.right
            elif q is p.left:
                p.left = q.right
            else:
                p.right = q.right
            return
        # 查找节点q的左子树的最右节点,将q的右子树链接为该节点的右子树
        # 该方法可能会增大树的深度,效率并不算高。可以设计其它的方法。
        r = q.left
        while r.right:
            r = r.right
        r.right = q.right
        if p is None:
            self._root = q.left
        elif p.left is q:
            p.left = q.left
        else:
            p.right = q.left

    def __iter__(self):
        """
        实现二叉树的中序遍历算法,
        展示我们创建的二叉排序树.
        直接使用python内置的列表作为一个栈。
        :return: data
        """
        stack = []
        node = self._root
        while node or stack:
            while node:
                stack.append(node)
                node = node.left
            node = stack.pop()
            yield node.data
            node = node.right
lis = [62, 58, 88, 48, 73, 99, 35, 51, 93, 29, 37, 49, 56, 36, 50]
bs_tree = BinarySortTree()
for i in range(len(lis)):
    bs_tree.insert(lis[i])

for i in bs_tree:
    print i

你可能感兴趣的:(Python)