matplotlib(5)-- 等高线contourf、contour;imshow() ; colorbar(); 3D数据处理

 1 import matplotlib.pyplot as plt
 2 import numpy as np
 3 
 4 #定义计算高度的函数
 5 def f(x,y):
 6     return (1 - x/2 + x**5 +y**3) * np.exp(-x**2 - y**2)
 7 
 8 n = 256
 9 x = np.linspace(-3, 3, n)
10 y = np.linspace(-3, 3, n)
11 #核心函数是plt.contourf(),但在这个函数中输入的参数是x,y对应的网格数据以及此网格对应的高度值
12 #因此我们调用np.meshgrid(x,y)把x,y值转换成网格数据
13 X, Y = np.meshgrid(x, y)
14 
15 #plt.contourf 与 plt.contour 区别:
16 # f:filled,也即对等高线间的填充区域进行填充(使用不同的颜色)
17 # contourf:将不会再绘制等高线(显然不同的颜色分界就表示等高线本身)
18 
19 #use plt.contourf to filling contours(轮廓)
20 #X, Y and value for (X ,Y) point
21 plt.contourf(X, Y,f(X, Y), 8, alpha = 0.75, cmap = plt.get_cmap('rainbow'))
22 
23 #use plt.contour to add contour lines
24 C = plt.contour(X, Y,f(X, Y), 8, colors = "black", linewidth = .5)
25 #关于cmap颜色选择,参考 https://matplotlib.org/examples/color/colormaps_reference.html
26 
27 #adding label(为等高线上注明等高线的含义)
28 plt.clabel(C, inline = True, fontsize = 10)
29 
30 plt.xticks(())
31 plt.yticks(())
32 
33 plt.show()

 

 1 import matplotlib.pyplot as plt
 2 import numpy as np
 3 
 4 # image data
 5 a = np.array([0.313660827978, 0.365348418405, 0.423733120134,
 6               0.365348418405, 0.439599930621, 0.525083754405,
 7               0.423733120134, 0.525083754405, 0.651536351379]).reshape(3,3)
 8 
 9 #reshape()是数组对象中的方法,用于改变数组的形状。具体用法参考博文:https://blog.csdn.net/qq_28618765/article/details/78083895
10 
11 #plt.imshow()参数设置参考 https://matplotlib.org/api/_as_gen/matplotlib.pyplot.imshow.html
12 plt.imshow(a, interpolation='nearest', cmap='cool', origin='upper')
13 #参数interpolation为边界的模糊度或者图片的模糊度,参考博文 https://blog.csdn.net/qq_41634283/article/details/84933753
14 #参数origin: {'upper', 'lower'}, optional
15     # 将数组的[0,0]索引放置在轴的左上角或左下角。约定“上”通常用于矩阵和图像。如果未给出,则使用rcparams[“image.origin”],默认为“upper”。
16 
17 plt.colorbar(shrink=.92)
18 #给figure添加颜色条或者渐变条,参考博文 https://www.jianshu.com/p/d97c1d2e274f
19 #colorbar()参数设置参考https://matplotlib.org/api/_as_gen/matplotlib.pyplot.colorbar.html
20 
21 plt.xticks(())
22 plt.yticks(())
23 
24 plt.show()

 

 1 import numpy as np
 2 import matplotlib.pyplot as plt
 3 from mpl_toolkits.mplot3d import Axes3D        #导入绘制3D数据的模块
 4 
 5 fig = plt.figure()
 6 ax = Axes3D(fig)
 7 # X, Y value
 8 X = np.arange(-4, 4, 0.25)
 9 Y = np.arange(-4, 4, 0.25)
10 X, Y = np.meshgrid(X, Y)  #np.meshgrid(x,y)把x,y值转换成网格数据
11 # height value
12 Z = np.sin(np.sqrt(X ** 2 + Y ** 2))
13 
14 ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=plt.get_cmap('rainbow'), edgecolor = "black")
15 #plot_surfac()参数设置参考 https://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html
16 # *X*, *Y*, *Z*:Data values as 2D arrays
17 # *rstride* :Array row stride (step size), defaults to 10
18 # *cstride*:Array column stride (step size), defaults to 10
19 #  *cmap*:A colormap for the surface patches.
20 ax.contourf(X, Y, Z, zdir = "z", offset = -2, cmap = "rainbow" )
21 
22 ax.set_zlim(-2, 2)
23 
24 plt.show()

 

转载于:https://www.cnblogs.com/guoruxin/p/11248269.html

你可能感兴趣的:(matplotlib(5)-- 等高线contourf、contour;imshow() ; colorbar(); 3D数据处理)