常用泰勒、微积分公式

常用公式

常用穷小替换

x = > sin ⁡ x = > tan ⁡ x = > arcsin ⁡ x = > arctan ⁡ x = > ln ⁡ ( x + 1 ) = > e x − 1 x=>\sin x=>\tan x=>\arcsin x=>\arctan x=>\ln (x+1)=>e^x-1 x=>sinx=>tanx=>arcsinx=>arctanx=>ln(x+1)=>ex1
( x + 1 ) a − 1 = > a x (x+1)^a-1=>ax (x+1)a1=>ax
a x − 1 = > x l n ( a ) a^x-1=>xln(a) ax1=>xln(a)
1 − cos ⁡ x = > 1 2 x 2 1-\cos x=>\frac{1}{2}x^2 1cosx=>21x2
tan ⁡ x − sin ⁡ x = > tan ⁡ x ( 1 − cos ⁡ x ) = > 1 2 x 3 \tan x-\sin x=>\tan x(1-\cos x)=>\frac{1}{2}x^3 tanxsinx=>tanx(1cosx)=>21x3

常用泰勒展开式

  • x − f ( x ) x-f(x) xf(x)展开
    x − sin ⁡ x = 1 6 x 3 + o ( x 3 ) x-\sin x=\frac{1}{6}x^3+o(x^3) xsinx=61x3+o(x3)
    x − arcsin ⁡ x = − 1 6 x 3 + o ( x 3 ) x-\arcsin x=-\frac{1}{6}x^3+o(x^3) xarcsinx=61x3+o(x3)
    x − tan ⁡ x = − 1 3 x 3 + o ( x 3 ) x-\tan x=-\frac{1}{3}x^3+o(x^3) xtanx=31x3+o(x3)
    x − arctan ⁡ x = 1 3 x 3 + o ( x 3 ) x-\arctan x=\frac{1}{3}x^3+o(x^3) xarctanx=31x3+o(x3)
  • 三角函数展开
    e x = 1 + x + x 2 2 ! + x 3 3 ! + o ( x 3 ) e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+o(x^3) ex=1+x+2!x2+3!x3+o(x3)
    sin ⁡ x = x − x 3 3 ! + x 5 5 ! + o ( x 5 ) \sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}+o(x^5) sinx=x3!x3+5!x5+o(x5)
    cos ⁡ x = 1 − x 2 2 ! + x 4 4 ! + o ( x 4 ) \cos x=1-\frac{x^2}{2!}+\frac{x^4}{4!}+o(x^4) cosx=12!x2+4!x4+o(x4)
    ln ⁡ ( x + 1 ) = x − 1 2 x 2 + 1 3 x 3 + o ( x 3 ) \ln(x+1)=x-\frac{1}{2}x^2+\frac{1}{3}x^3+o(x^3) ln(x+1)=x21x2+31x3+o(x3)

常用微分公式

d tan ⁡ x = ( sec ⁡ x ) 2 d x d\tan x=(\sec x)^2dx dtanx=(secx)2dx
d cot ⁡ x = − ( csc ⁡ x ) 2 d x d\cot x=-(\csc x)^2dx dcotx=(cscx)2dx
d sec ⁡ x = sec ⁡ x tan ⁡ x d x d\sec x=\sec x\tan xdx dsecx=secxtanxdx
d csc ⁡ x = − csc ⁡ x cot ⁡ x d x d\csc x=-\csc x\cot xdx dcscx=cscxcotxdx
d arcsin ⁡ x = 1 1 − x 2 d x d\arcsin x=\frac{1}{\sqrt{1-x^2}}dx darcsinx=1x2 1dx
d arccos ⁡ x = − 1 1 − x 2 d x d\arccos x=-\frac{1}{\sqrt{1-x^2}}dx darccosx=1x2 1dx
d arctan ⁡ x = 1 1 + x 2 d x d\arctan x=\frac{1}{1+x^2}dx darctanx=1+x21dx
d a r c o t x = − 1 1 + x 2 d x darcot x=-\frac{1}{1+x^2}dx darcotx=1+x21dx

常用高阶导数公式

( e a x ) ( n ) = a n e a n (e^{ax})^{(n)}=a^ne^{an} (eax)(n)=anean
( sin ⁡ a x ) ( n ) = a n sin ⁡ ( a x + n Π 2 ) (\sin ax)^{(n)}=a^n\sin (ax+n\frac{\Pi}{2}) (sinax)(n)=ansin(ax+n2Π)
( cos ⁡ a x ) ( n ) = a n cos ⁡ ( a x + n Π 2 ) (\cos ax)^{(n)}=a^n\cos (ax+n\frac{\Pi}{2}) (cosax)(n)=ancos(ax+n2Π)
( ln ⁡ ( 1 + x ) ) ( n ) = ( − 1 ) n − 1 ( n − 1 ) ! ( x + 1 ) n (\ln (1+x))^{(n)}=(-1)^{n-1}\frac{(n-1)!}{(x+1)^n} (ln(1+x))(n)=(1)n1(x+1)n(n1)!
( 1 x ) ( n ) = ( − 1 ) n n ! x n + 1 (\frac{1}{x})^{(n)}=(-1)^n\frac{n!}{x^{n+1}} (x1)(n)=(1)nxn+1n!

  • 莱布尼茨公式
    ( u v ) ( n ) = u ( n ) v + C n 1 u ( n − 1 ) v + C n k u ( n − k ) v ( k ) + u v n (uv)^{(n)}=u^{(n)}v+C_n^1u^{(n-1)}v+C_n^ku^{(n-k)}v^{(k)}+uv^{n} (uv)(n)=u(n)v+Cn1u(n1)v+Cnku(nk)v(k)+uvn

常用积分公式

∫ tan ⁡ x d x = − ln ⁡ ∣ cos ⁡ x ∣ + C \int \tan xdx=-\ln|\cos x|+C tanxdx=lncosx+C
∫ cot ⁡ x d x = ln ⁡ ∣ sin ⁡ x ∣ + C \int \cot xdx=\ln|\sin x|+C cotxdx=lnsinx+C
∫ sec ⁡ x d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C \int \sec xdx=\ln\left|\sec x+\tan x\right|+C secxdx=lnsecx+tanx+C
∫ csc ⁡ x d x = ln ⁡ ∣ csc ⁡ x − cot ⁡ x ∣ + C \int \csc x dx=\ln\left|\csc x-\cot x\right|+C cscxdx=lncscxcotx+C
∫ sec ⁡ 2 ( x ) d x = tan ⁡ x + C \int \sec^2(x)dx=\tan x+C sec2(x)dx=tanx+C
∫ csc ⁡ x d x = cot ⁡ x + C \int \csc xdx=\cot x+C cscxdx=cotx+C
∫ 1 a 2 + x 2 d x = 1 a tan ⁡ ( 1 a x ) + C \int \frac{1}{a^2+x^2}dx=\frac{1}{a}\tan(\frac{1}{a}x)+C a2+x21dx=a1tan(a1x)+C
∫ 1 a 2 − x 2 d x = 1 2 a ln ⁡ ∣ a + x a − x ∣ + C \int \frac{1}{a^2-x^2}dx=\frac{1}{2a}\ln\left|\frac{a+x}{a-x}\right|+C a2x21dx=2a1lnaxa+x+C
∫ 1 a 2 − x 2 d x = arcsin ⁡ 1 a x \int \frac{1}{\sqrt{a^2-x^2}}dx=\arcsin\frac{1}{a}x a2x2 1dx=arcsina1x
∫ 1 x 2 ± a 2 d x = ln ⁡ ∣ x + x 2 ± a 2 ∣ + C \int \frac{1}{\sqrt{x^2\pm a^2}}dx=\ln|x+\sqrt{x^2\pm a^2}|+C x2±a2 1dx=lnx+x2±a2 +C
∫ ln ⁡ x d x = x ln ⁡ x − x + C \int \ln xdx=x\ln x-x+C lnxdx=xlnxx+C

Mathmatica常用命令

  • Solve[x^2 + a x + 1 == 0, x]求方程的解
  • Integrate[f,x,x_min,x_max]求定积分和不定积分
  • Limit[Sin[x]/x, x -> 0]求极限

你可能感兴趣的:(其他,高数)