【毕设进行时-工业大数据,数据挖掘】用C++对数据进行整改,修缮一下!

正文之前

因为数据差距实在太大,从10-10000都有,要是全搞决策树我估计我是啥都不用搞了,看着电脑卡死就ok!所以特地将连续的数据转化为连续的数据!看看是不是会生成新的、更好地决策树!

正文

废话不多说!直接丢代码!不然真是难受的一批!写了好一会儿才搞定的!

#include
#include
#include
using namespace std;

int main()
{
    int count=0;
    float attr[34];
    ifstream in("/Users/zhangzhaobo/Documents/Graduation-Design/Mydata.txt");
    ofstream out("/Users/zhangzhaobo/Documents/Graduation-Design/Data/New_Data.txt");
    string line[34];
    for (int i = 0; i < 34; ++i)
    {
        in>>line[i];
    }
    out<<"Diff_X"<<"\t"<<"Diff_Y"<<"\t";
    for (int i = 4; i < 8; ++i)
    {
        out<>attr[i];
        }
        float X_dis=attr[1]-attr[0];
        float Y_dis=attr[3]-attr[2];
        float Luminosity_dis=attr[9]-attr[8];
        float TypeOfSteel=attr[11];
        out<

正文

改善之后的属性为:

Diff_X  Diff_Y  Pixels_Areas    X_Perimeter Y_Perimeter Sum_of_Luminosity   Diff_Luminosity Length_of_Conveyer  TypeouOfSteel   Steel_Plate_Thickness   Edges_Index Empty_Index Square_Index    Outside_X_Index Edges_X_Index   Edges_Y_Index   Outside_Global_Index    LogOfAreas  Log_X_Index Log_Y_Index Orientation_Index   Luminosity_Index    SigmoidOfAreas  Fault
8   44  267 17  44  24220   32  1687    1   80  0.0498  0.2415  0.1818  0.0047  0.4706  1   1   2.4265  0.9031  1.6435  0.8182  -0.2913 0.5822  128
6   29  108 10  30  11397   39  1687    1   80  0.7647  0.3793  0.2069  0.0036  0.6 0.9667  1   2.0334  0.7782  1.4624  0.7931  -0.1756 0.2984  128

为此还特地写了个C++的程序来观察!

#include
#include
#include
using namespace std;

int main()
{
    string line[72];
    int count=0;
    for (int i = 0; i < 72; ++i)
    {
        cin>>line[i];
    }
    for (int i = 0; i < 24; ++i)
    {
        cout<<"[->"< "< "<

最后整出来还蛮好看!

[->0: Diff_X --> 8 --> 6
[->1: Diff_Y --> 44 --> 29
[->2: Pixels_Areas --> 267 --> 108
[->3: X_Perimeter --> 17 --> 10
[->4: Y_Perimeter --> 44 --> 30
[->5: Sum_of_Luminosity --> 24220 --> 11397
[->6: Diff_Luminosity --> 32 --> 39
[->7: Length_of_Conveyer --> 1687 --> 1687
[->8: TypeouOfSteel --> 1 --> 1
[->9: Steel_Plate_Thickness --> 80 --> 80
[->10: Edges_Index --> 0.0498 --> 0.7647
[->11: Empty_Index --> 0.2415 --> 0.3793
[->12: Square_Index --> 0.1818 --> 0.2069
[->13: Outside_X_Index --> 0.0047 --> 0.0036
[->14: Edges_X_Index --> 0.4706 --> 0.6
[->15: Edges_Y_Index --> 1 --> 0.9667
[->16: Outside_Global_Index --> 1 --> 1
[->17: LogOfAreas --> 2.4265 --> 2.0334
[->18: Log_X_Index --> 0.9031 --> 0.7782
[->19: Log_Y_Index --> 1.6435 --> 1.4624
[->20: Orientation_Index --> 0.8182 --> 0.7931
[->21: Luminosity_Index --> -0.2913 --> -0.1756
[->22: SigmoidOfAreas --> 0.5822 --> 0.2984
[->23: Fault --> 128 --> 128

你可能感兴趣的:(【毕设进行时-工业大数据,数据挖掘】用C++对数据进行整改,修缮一下!)