stm32定时器时钟以及中间对齐模式

在永磁同步电机的控制中,需要对电机的三相定子施加一定的电压,才能控制电机转动。现在用的较多的是SVPWM(SVPWM的具体原理会在后面另写一篇博客说明),要想产生SVPWM波形,需要控制的三相电压呈如下形式,即A、B、C三相的电压是中间对齐的,这就需要用到stm32定时器的中间对齐模式了。

stm32定时器时钟以及中间对齐模式_第1张图片

1、stm32的时钟树

stm32的时钟树如下图所示,简单介绍一下stm32时钟的配置过程。以外部时钟作为时钟源为例。HSE代表外部时钟(假设为8M)、SYSCLK为系统时钟,经过倍频器之后变成168M、SYSCLK经过AHB预分频器(假设分频系数为1)后变成HCLK时钟等于系统时钟SYSCLKHCLK即AHB外部总线时钟,经过APB预分频器分出APB1时钟(分频系数为2,低速设备SYSCLK/4)与APB2时钟(分频系数为1,高速设备SYSCLK/2

HSE->SYSCLK->HCLK->APB1、APB2。

stm32定时器时钟以及中间对齐模式_第2张图片

 针对stm32f427的配置源码如下

static void SetSysClock(void)
{
#if defined (STM32F40_41xxx) || defined (STM32F427_437xx) || defined (STM32F429_439xx) || defined (STM32F401xx)
/******************************************************************************/
/*            PLL (clocked by HSE) used as System clock source                */
/******************************************************************************/
  __IO uint32_t StartUpCounter = 0, HSEStatus = 0;
  
  /* Enable HSE */
  RCC->CR |= ((uint32_t)RCC_CR_HSEON);
 
  /* Wait till HSE is ready and if Time out is reached exit */
  do
  {
    HSEStatus = RCC->CR & RCC_CR_HSERDY;
    StartUpCounter++;
  } while((HSEStatus == 0) && (StartUpCounter != HSE_STARTUP_TIMEOUT));

  if ((RCC->CR & RCC_CR_HSERDY) != RESET)
  {
    HSEStatus = (uint32_t)0x01;
  }
  else
  {
    HSEStatus = (uint32_t)0x00;
  }

  if (HSEStatus == (uint32_t)0x01)
  {
    /* Select regulator voltage output Scale 1 mode */
    RCC->APB1ENR |= RCC_APB1ENR_PWREN;
    PWR->CR |= PWR_CR_VOS;

    /* HCLK = SYSCLK / 1*/
    RCC->CFGR |= RCC_CFGR_HPRE_DIV1;//AHB时钟  

#if defined (STM32F40_41xxx) || defined (STM32F427_437xx) || defined (STM32F429_439xx)      
    /* PCLK2 = HCLK / 2*/
    RCC->CFGR |= RCC_CFGR_PPRE2_DIV2;//APB2时钟
    
    /* PCLK1 = HCLK / 4*/
    RCC->CFGR |= RCC_CFGR_PPRE1_DIV4;//APB1时钟
#endif /* STM32F40_41xxx || STM32F427_437x || STM32F429_439xx */

   
    /* Configure the main PLL */
    RCC->PLLCFGR = PLL_M | (PLL_N << 6) | (((PLL_P >> 1) -1) << 16) |
                   (RCC_PLLCFGR_PLLSRC_HSE) | (PLL_Q << 24);

    /* Enable the main PLL */
    RCC->CR |= RCC_CR_PLLON;

    /* Wait till the main PLL is ready */
    while((RCC->CR & RCC_CR_PLLRDY) == 0)
    {
    }
   
#if defined (STM32F427_437xx) || defined (STM32F429_439xx)
    /* Enable the Over-drive to extend the clock frequency to 180 Mhz */
    PWR->CR |= PWR_CR_ODEN;
    while((PWR->CSR & PWR_CSR_ODRDY) == 0)
    {
    }
    PWR->CR |= PWR_CR_ODSWEN;
    while((PWR->CSR & PWR_CSR_ODSWRDY) == 0)
    {
    }      
    /* Configure Flash prefetch, Instruction cache, Data cache and wait state */
    FLASH->ACR = FLASH_ACR_PRFTEN | FLASH_ACR_ICEN |FLASH_ACR_DCEN |FLASH_ACR_LATENCY_5WS;
#endif /* STM32F427_437x || STM32F429_439xx  */


    /* Select the main PLL as system clock source */
    RCC->CFGR &= (uint32_t)((uint32_t)~(RCC_CFGR_SW));
    RCC->CFGR |= RCC_CFGR_SW_PLL;

    /* Wait till the main PLL is used as system clock source */
    while ((RCC->CFGR & (uint32_t)RCC_CFGR_SWS ) != RCC_CFGR_SWS_PLL);
    {
    }
  }
  else
  { /* If HSE fails to start-up, the application will have wrong clock
         configuration. User can add here some code to deal with this error */
  }
}

2、stm32定时器的时钟

 stm32定时器分为高级定时器(TIM1与TIM8)、通用定时器(TIM2-TIM5、TIM9-TIM14)、基本定时器(TIM6、TIM7)。不同的定时器使用不同的时钟。

其中TIM1、TIM8、TIM10、TIM11使用的是APB2时钟,而其余定时器使用的是APB1时钟。

stm32定时器时钟以及中间对齐模式_第3张图片

在stm32手册中有这么一段话

stm32定时器时钟以及中间对齐模式_第4张图片

 根据前面RCC配置可以知道TIM1、TIM8、TIM10、TIM11使用的时钟频率为SYSCLK,其他定时器使用的时钟频率为SYSCLK/2

3、stm32定时器1的中间对齐模式

对齐模式的图示如下图所示,可以看到在中心对齐模式下产生的PWM波形的周期比实际计数周期要大1倍,所以假设要使用中间对齐模式,并且需要产生的PWM波频率为20K,那么对应的定时器时基应该设为40K。

stm32定时器时钟以及中间对齐模式_第5张图片

在SVPWM波的产生过程中使用的是定时器1的3对互补的PWM通道,它的配置如下

static void TIM1_Configuration(void)
{    
    TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
    TIM_OCInitTypeDef  TIM_OCInitStructure;
    TIM_BDTRInitTypeDef TIM_BDTRInitStructure;
    
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE);//使能定时器1时钟
    
    Time1_Period =  (SystemCoreClock / 40000 );//定时器频率为APB2频率的2倍=HCLK 自动重装载为40K,最大值为4200
    
    Limit_Pluse_Max_Value = Time1_Period * 0.95;
    
  /* TIM1 Peripheral Configuration */ 
    
  TIM_DeInit(TIM1);

  /* Time Base configuration */
    //配置定时器的计数方式为中间对齐方式,所以产生的PWM波的频率为20K
  TIM_TimeBaseStructure.TIM_Prescaler = 0x0;
  TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_CenterAligned1;//TIM_CounterMode_Up;TIM_CounterMode_CenterAligned1
  TIM_TimeBaseStructure.TIM_Period = Time1_Period - 1;//PERIOD;//定时器时基40K
  TIM_TimeBaseStructure.TIM_ClockDivision = 0x0;
  TIM_TimeBaseStructure.TIM_RepetitionCounter = 0x0;

  TIM_TimeBaseInit(TIM1,&TIM_TimeBaseStructure);

  /* Channel 1, 2,3 and 4 Configuration in PWM mode */
  TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1; 
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable; 
  TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;                  
  TIM_OCInitStructure.TIM_Pulse = Time1_Period / 2;//CCR1_Val; //占空比50%
  TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;//TIM_OCPolarity_Low;TIM_OCPolarity_High;
  TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_High;//TIM_OCNPolarity_Low;TIM_OCNPolarity_High;         
  TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset;//TIM_OCIdleState_Set;
  TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Reset;
    
  TIM_OC1Init(TIM1,&TIM_OCInitStructure); 

  TIM_OCInitStructure.TIM_Pulse = Time1_Period / 2;//CCR2_Val;//占空比50%
  TIM_OC2Init(TIM1,&TIM_OCInitStructure);

  TIM_OCInitStructure.TIM_Pulse = Time1_Period / 2;//CCR3_Val;//占空比50%
  TIM_OC3Init(TIM1,&TIM_OCInitStructure);
    
    
//   /* Channel 4 Configuration in OC */
//   TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2;
//   TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
//   TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Disable;
//   TIM_OCInitStructure.TIM_Pulse = 4000;//Time1_Period / 2;            //1500;//PERIOD - 1; 
//   
//   TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High; 
//   TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_Low;         
//   TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Reset;
//   TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCIdleState_Reset;            
  
//   TIM_OC4Init(TIM1,&TIM_OCInitStructure);    
    
    /* TIMx->CCMR1的bit3设为1:输出比较寄存器预装载使能 */  // PWM占空比改变只在更新事件时生效
  TIM_OC1PreloadConfig(TIM1,TIM_OCPreload_Enable);//A相
    
    /* TIMx->CCMR1的bit11设为1:输出比较寄存器预装载使能 */ // PWM占空比改变只在更新事件时生效
  TIM_OC2PreloadConfig(TIM1,TIM_OCPreload_Enable);//B相
    
    /* TIMx->CCMR2的bit3设为1:输出比较寄存器预装载使能 */  // PWM占空比改变只在更新事件时生效
  TIM_OC3PreloadConfig(TIM1,TIM_OCPreload_Enable);//C相

//   TIM_OC4PreloadConfig(TIM1,TIM_OCPreload_Enable);//电磁铁
    
  /* Automatic Output enable, Break, dead time and lock configuration*/
  TIM_BDTRInitStructure.TIM_OSSRState = TIM_OSSRState_Enable;
  TIM_BDTRInitStructure.TIM_OSSIState = TIM_OSSIState_Enable;
  TIM_BDTRInitStructure.TIM_LOCKLevel = TIM_LOCKLevel_1; 
  TIM_BDTRInitStructure.TIM_DeadTime = 50;
  TIM_BDTRInitStructure.TIM_Break = TIM_Break_Disable;//TIM_Break_Enable;
  TIM_BDTRInitStructure.TIM_BreakPolarity = TIM_BreakPolarity_High;
  TIM_BDTRInitStructure.TIM_AutomaticOutput = TIM_AutomaticOutput_Disable;//TIM_AutomaticOutput_Enable;

  TIM_BDTRConfig(TIM1,&TIM_BDTRInitStructure);
    
    TIM_SelectOutputTrigger(TIM1,TIM_TRGOSource_Update);
    
  /* TIM1 counter enable */
//   TIM_Cmd(TIM1,ENABLE);

  /* Main Output Enable */
   TIM_CtrlPWMOutputs(TIM1,ENABLE);//由于使用中间对齐模式,PWM频率为20K
    
  //TIM_ITConfig(TIM1, TIM_IT_Update, ENABLE);//定时器1的溢出中断
}

 

转载于:https://www.cnblogs.com/andyfly/p/9761264.html

你可能感兴趣的:(嵌入式)