圆柱绕流

突然接触到了流体、CFD、LBM等等
入坑指南
传输过程数值模拟学习笔记
CFDPython 12 steps to Navier–Stokes
up效果非常棒

matlab(有动图)
圆柱绕流_第1张图片

% =========================================================================
% Channel flow past a cylinderical obstacle, using a LB method
% =========================================================================
% Lattice Boltzmann sample in Matlab
% Original implementaion of Zou/He boundary condition
% =========================================================================
% =========================================================================
clear all 
close all 
clc 
% =========================================================================
 
% GENERAL FLOW CONSTANTS --------------------------------------------------
lx = 400;                                                                  % number of cells in x-direction
ly = 100;                                                                   % number of cells in y-direction
obst_x = lx/5+1;                                                           % position of the cylinder; (exact y-symmetry is avoided)
obst_y = ly/2+3;                         
obst_r = ly/10+1;                                                          % radius of the cylinder
uMax = 0.1;                                                                % maximum velocity of Poiseuille inflow
Re = 100;                                                                  % Reynolds number
nu = uMax * 2.*obst_r / Re;                                                % kinematic viscosity
omega = 1. / (3*nu+1./2.);                                                 % relaxation parameter
maxT = 400000;                                                             % total number of iterations
tPlot = 50;                                                                % cycles
 
% =========================================================================
% D2Q9 LATTICE CONSTANTS --------------------------------------------------
t     = [4/9, 1/9,1/9,1/9,1/9, 1/36,1/36,1/36,1/36]; 
cx    = [ 0, 1, 0, -1, 0, 1, -1, -1, 1]; 
cy    = [ 0, 0, 1, 0, -1, 1, 1, -1, -1]; 
opp   = [ 1, 4, 5, 2, 3, 8, 9, 6, 7]; 
col   = [2:(ly-1)]; 
in    = 1;                                                                 % position of inlet
out   = lx;                                                                % position of outlet
[y,x] = meshgrid(1:ly,1:lx);                                               % get coordinate of matrix indices
obst  = (x-obst_x).^2 + (y-obst_y).^2 <= obst_r.^2;                        % Location of cylinder
 
obst(:,[1,ly]) = 1;                                                        % Location of top/bottom boundary
bbRegion = find(obst);                                                     % Boolean mask for bounce-back cells
 
 
% =========================================================================
% INITIAL CONDITION: Poiseuille profile at equilibrium --------------------
L      = ly-2;  
y_phys = y-1.5; 
 
ux = 4 * uMax / (L*L) * (y_phys.*L-y_phys.*y_phys); 
uy = zeros(lx,ly); 
rho = 1; 
 
for i=1:9 
    cu = 3*(cx(i)*ux+cy(i)*uy); 
 
    fIn(i,:,:) = rho .* t(i) .*( 1 + cu + 1/2*(cu.*cu) - 3/2*(ux.^2+uy.^2) ); 
end 
 
% MAIN LOOP (TIME CYCLES)--------------------------------------------------
for cycle = 1:maxT 
 
    % MACROSCOPIC VARIABLES
    rho = sum(fIn); 
    ux = reshape ( (cx * reshape(fIn,9,lx*ly)), 1,lx,ly) ./rho; 
    uy = reshape ( (cy * reshape(fIn,9,lx*ly)), 1,lx,ly) ./rho; 
 
    % MACROSCOPIC (DIRICHLET) BOUNDARY CONDITIONS -------------------------
 
    % Inlet: Poiseuille profile -------------------------------------------
    y_phys = col-1.5; 
    ux(:,in,col) = 4 * uMax / (L*L) * (y_phys.*L-y_phys.*y_phys); 
    uy(:,in,col) = 0; 
    rho(:,in,col) = 1 ./ (1-ux(:,in,col)) .* (sum(fIn([1,3,5],in,col)) + 2*sum(fIn([4,7,8],in,col))); 
 
    % Outlet: Constant pressure -------------------------------------------
    rho(:,out,col) = 1; 
    ux(:,out,col) = -1 + 1 ./ (rho(:,out,col)) .* (sum(fIn([1,3,5],out,col)) + 2*sum(fIn([2,6,9],out,col))); 
    uy(:,out,col) = 0; 
    % MICROSCOPIC BOUNDARY CONDITIONS: INLET (Zou/He BC)
    fIn(2,in,col) = fIn(4,in,col) + 2/3*rho(:,in,col).*ux(:,in,col); 
    fIn(6,in,col) = fIn(8,in,col) + 1/2*(fIn(5,in,col)-fIn(3,in,col)) ...
                                  + 1/2*rho(:,in,col).*uy(:,in,col) ...
                                  + 1/6*rho(:,in,col).*ux(:,in,col); 
                               
    fIn(9,in,col) = fIn(7,in,col) + 1/2*(fIn(3,in,col)-fIn(5,in,col)) ...
                                  - 1/2*rho(:,in,col).*uy(:,in,col) ...
                                  + 1/6*rho(:,in,col).*ux(:,in,col); 
      
    % MICROSCOPIC BOUNDARY CONDITIONS: OUTLET (Zou/He BC)
    fIn(4,out,col) = fIn(2,out,col) - 2/3*rho(:,out,col).*ux(:,out,col); 
 
    fIn(8,out,col) = fIn(6,out,col) + 1/2*(fIn(3,out,col)-fIn(5,out,col)) ...
                                    - 1/2*rho(:,out,col).*uy(:,out,col) ...
                                    - 1/6*rho(:,out,col).*ux(:,out,col); 
 
    fIn(7,out,col) = fIn(9,out,col) + 1/2*(fIn(5,out,col)-fIn(3,out,col)) ...
                                    + 1/2*rho(:,out,col).*uy(:,out,col) ...
                                    - 1/6*rho(:,out,col).*ux(:,out,col); 
    % COLLISION STEP ------------------------------------------------------
for i=1:9 
    cu = 3*(cx(i)*ux+cy(i)*uy); 
    fEq(i,:,:) = rho .* t(i) .* ( 1 + cu + 1/2*(cu.*cu) - 3/2*(ux.^2+uy.^2) ); 
    fOut(i,:,:) = fIn(i,:,:) - omega .* (fIn(i,:,:)-fEq(i,:,:)); 
end 
 
% =========================================================================
% OBSTACLE (BOUNCE-BACK)
for i=1:9 
    fOut(i,bbRegion) = fIn(opp(i),bbRegion); 
end 
 
% =========================================================================
% STREAMING STEP
for i=1:9 
    fIn(i,:,:) = circshift(fOut(i,:,:), [0,cx(i),cy(i)]); 
end 
 
% =========================================================================
% VISUALIZATION
if (mod(cycle,tPlot)==1) 
    u = reshape(sqrt(ux.^2+uy.^2),lx,ly); 
    u(bbRegion) = nan; 
    imagesc(u');
    axis equal off; drawnow
end
end

第二版本来自当码网(运行慢)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% cylinder.m: Channel flow pas a cylinderical %
% obstacle, using a LB method %
% %
% Copyright (c) 2006, Jonas Latt %
% %
% This program is released under the GNU %
% General Public License (GPL) %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear

ttt = cputime; 

% GENERAL FLOW CONSTANTS
lx = 2500;
ly = 510;
obst_x = lx/5+1; % position of the cylinder; (exact
obst_y = ly/2+1; % y?symmetry is avoided)
obst_r = ly/10+1; % radius of the cylinder
uMax = 0.02; % maximum velocity of Poiseuille inflow
Re = 100; % Reynolds number
nu = uMax * 2.*obst_r / Re; % kinematic viscosity
omega = 1. / (3*nu+1./2.); % relaxation parameter
%maxT = 400000; % total number of iterations
maxT = 4000; % total number of iterations
tPlot = 2; % cycles

% D2Q9 LATTICE CONSTANTS
t = [4/9, 1/9,1/9,1/9,1/9, 1/36,1/36,1/36,1/36];
cx = [ 0, 1, 0, -1, 0, 1, -1, -1, 1];
cy = [ 0, 0, 1, 0, -1, 1, 1, -1, -1];
opp = [ 1, 4, 5, 2, 3, 8, 9, 6, 7];
col = [2:(ly-1)];

[y,x] = meshgrid(1:ly,1:lx);
obst = (x-obst_x).^2 + (y-obst_y).^2 <= obst_r.^2;
obst(:,[1,ly]) = 1;
bbRegion = find(obst);

% INITIAL CONDITION: (rho=0, u=0) ==> fIn(i) = t(i)
fIn = reshape( t'*ones(1,lx*ly), 9, lx, ly);

% MAIN LOOP (TIME CYCLES)
for cycle = 1:maxT
% MACROSCOPIC VARIABLES
    rho = sum(fIn);
    ux = reshape ( ...
        (cx * reshape(fIn,9,lx*ly)), 1,lx,ly) ./rho;
    uy = reshape ( ...
        (cy * reshape(fIn,9,lx*ly)), 1,lx,ly) ./rho;
    
    % MACROSCOPIC (DIRICHLET) BOUNDARY CONDITIONS
       % Inlet: Poiseuille profile
    L = ly-2; y = col-1.5;
    ux(:,1,col) = 4 * uMax / (L*L) * (y.*L-y.*y);
    uy(:,1,col) = 0;
    rho(:,1,col) = 1 ./ (1-ux(:,1,col)).* ( ...
        sum(fIn([1,3,5],1,col)) + ...
        2*sum(fIn([4,7,8],1,col)) );
    % Outlet: Zero gradient on rho/ux
    rho(:,lx,col) = 4/3*rho(:,lx-1,col) - ...
        1/3*rho(:,lx-2,col);
    uy(:,lx,col) = 0;
    ux(:,lx,col) = 4/3*ux(:,lx-1,col) - ...
        1/3*ux(:,lx-2,col);
    
    % COLLISION STEP
    for i=1:9
        cu = 3*(cx(i)*ux+cy(i)*uy);
        fEq(i,:,:) = rho .* t(i) .* ...
            ( 1 + cu + 1/2*(cu.*cu) ...
            - 3/2*(ux.^2+uy.^2) );
        fOut(i,:,:) = fIn(i,:,:) - ...
            omega .* (fIn(i,:,:)-fEq(i,:,:));
    end
    
    % MICROSCOPIC BOUNDARY CONDITIONS
    for i=1:9
        % Left boundary
        fOut(i,1,col) = fEq(i,1,col) + ...
            18*t(i)*cx(i)*cy(i)* ( fIn(8,1,col) - ...
            fIn(7,1,col)-fEq(8,1,col)+fEq(7,1,col) );
        % Right boundary
        fOut(i,lx,col) = fEq(i,lx,col) + ...
            18*t(i)*cx(i)*cy(i)* ( fIn(6,lx,col) - ...
            fIn(9,lx,col)-fEq(6,lx,col)+fEq(9,lx,col) );
        % Bounce back region
        fOut(i,bbRegion) = fIn(opp(i),bbRegion);
    end
    % STREAMING STEP
    for i=1:9
        fIn(i,:,:) = ...
            circshift(fOut(i,:,:), [0,cx(i),cy(i)]);
    end
    % VISUALIZATION
    if (mod(cycle,tPlot)==0)
        u = reshape(sqrt(ux.^2+uy.^2),lx,ly);
        u(bbRegion) = nan;
        imagesc(u');
        axis equal off; drawnow
    end
end

ett = cputime-ttt

python版来自GitHub(需要自学自写)

不搬运了

圆柱绕流_第2张图片

你可能感兴趣的:(Matlab,matlab,python)