【题目链接】
- 点击打开链接
【思路要点】
- 以下考虑实现函数 f u n c ( N , a , b , c ) func(N,a,b,c) func(N,a,b,c) ,计算 0 ≤ k 1 + k 2 ≤ 10 0\leq k_1+k_2\leq10 0≤k1+k2≤10 的情况下所求式子的值,即
∑ i = 0 N i k 1 ⌊ a i + b c ⌋ k 2 \sum_{i=0}^{N}i^{k_1}\lfloor\frac{ai+b}{c}\rfloor^{k_2} i=0∑Nik1⌊cai+b⌋k2- 若 a = 0 a=0 a=0 或 ⌊ a N + b c ⌋ = 0 \lfloor\frac{aN+b}{c}\rfloor=0 ⌊caN+b⌋=0 ,那么, ⌊ a i + b c ⌋ \lfloor\frac{ai+b}{c}\rfloor ⌊cai+b⌋ 的取值始终相同,答案即为
⌊ a N + b c ⌋ ∑ i = 0 N i k 1 \lfloor\frac{aN+b}{c}\rfloor\sum_{i=0}^{N}i^{k_1} ⌊caN+b⌋i=0∑Nik1
可以用插值解决。- 若 a ≥ c a\geq c a≥c ,则令 q = ⌊ a c ⌋ , r = a − q c q=\lfloor\frac{a}{c}\rfloor,r=a-qc q=⌊ca⌋,r=a−qc ,所求式子即为
∑ i = 0 N i k 1 ( q i + ⌊ r i + b c ⌋ ) k 2 = ∑ i = 0 N i k 1 ∑ j = 0 k 2 ( k 2 j ) ( q i ) j ⌊ r i + b c ⌋ k 2 − j = ∑ j = 0 k 2 ( k 2 j ) q j ∑ i = 0 N i k 1 + j ⌊ r i + b c ⌋ k 2 − j \sum_{i=0}^{N}i^{k_1}(qi+\lfloor\frac{ri+b}{c}\rfloor)^{k_2}\\=\sum_{i=0}^{N}i^{k_1}\sum_{j=0}^{k_2}\binom{k_2}{j}(qi)^j\lfloor\frac{ri+b}{c}\rfloor^{k_2-j}\\=\sum_{j=0}^{k_2}\binom{k_2}{j}q^j\sum_{i=0}^{N}i^{k_1+j}\lfloor\frac{ri+b}{c}\rfloor^{k_2-j} i=0∑Nik1(qi+⌊cri+b⌋)k2=i=0∑Nik1j=0∑k2(jk2)(qi)j⌊cri+b⌋k2−j=j=0∑k2(jk2)qji=0∑Nik1+j⌊cri+b⌋k2−j
递归计算 f u n c ( N , r , b , c ) func(N,r,b,c) func(N,r,b,c) 即可。- 若 b ≥ c b\geq c b≥c ,则令 q = ⌊ b c ⌋ , r = b − q c q=\lfloor\frac{b}{c}\rfloor,r=b-qc q=⌊cb⌋,r=b−qc ,所求式子即为
∑ i = 0 N i k 1 ( q + ⌊ a i + r c ⌋ ) k 2 = ∑ i = 0 N i k 1 ∑ j = 0 k 2 ( k 2 j ) q j ⌊ a i + r c ⌋ k 2 − j = ∑ j = 0 k 2 ( k 2 j ) q j ∑ i = 0 N i k 1 ⌊ a i + r c ⌋ k 2 − j \sum_{i=0}^{N}i^{k_1}(q+\lfloor\frac{ai+r}{c}\rfloor)^{k_2}\\=\sum_{i=0}^{N}i^{k_1}\sum_{j=0}^{k_2}\binom{k_2}{j}q^j\lfloor\frac{ai+r}{c}\rfloor^{k_2-j}\\=\sum_{j=0}^{k_2}\binom{k_2}{j}q^j\sum_{i=0}^{N}i^{k_1}\lfloor\frac{ai+r}{c}\rfloor^{k_2-j} i=0∑Nik1(q+⌊cai+r⌋)k2=i=0∑Nik1j=0∑k2(jk2)qj⌊cai+r⌋k2−j=j=0∑k2(jk2)qji=0∑Nik1⌊cai+r⌋k2−j
递归计算 f u n c ( N , a , r , c ) func(N,a,r,c) func(N,a,r,c) 即可。- 否则,即 a < c , b < c , ⌊ a N + b c ⌋ > 0 a<c,b<c,\lfloor\frac{aN+b}{c}\rfloor>0 a<c,b<c,⌊caN+b⌋>0 ,令 M = ⌊ a N + b c ⌋ M=\lfloor\frac{aN+b}{c}\rfloor M=⌊caN+b⌋ 。
- 注意到 ⌊ a i + b c ⌋ k 2 \lfloor\frac{ai+b}{c}\rfloor^{k_2} ⌊cai+b⌋k2 较难处理,需要将其变形,有
⌊ a i + b c ⌋ k 2 = ∑ j = 0 ⌊ a i + b c ⌋ − 1 ( ( j + 1 ) k 2 − j k 2 ) \lfloor\frac{ai+b}{c}\rfloor^{k_2}=\sum_{j=0}^{\lfloor\frac{ai+b}{c}\rfloor-1}((j+1)^{k_2}-j^{k_2}) ⌊cai+b⌋k2=j=0∑⌊cai+b⌋−1((j+1)k2−jk2)- 注意这里规定 0 0 = 0 0^0=0 00=0 。
- 上述变换的好处是提供了交换求和顺序的可能,由此,原式可变为
∑ i = 0 N i k 1 ∑ j = 0 ⌊ a i + b c ⌋ − 1 ( ( j + 1 ) k 2 − j k 2 ) = ∑ j = 0 M − 1 ( ( j + 1 ) k 2 − j k 2 ) ∑ i = 0 N i k 1 [ ⌊ a i + b c ⌋ ≥ j + 1 ] = ∑ j = 0 M − 1 ( ( j + 1 ) k 2 − j k 2 ) ∑ i = 0 N i k 1 [ i > ⌊ c j + c − b − 1 a ⌋ ] = ∑ j = 0 M − 1 ( ( j + 1 ) k 2 − j k 2 ) ∑ i = 0 N i k 1 − ∑ j = 0 M − 1 ( ( j + 1 ) k 2 − j k 2 ) ∑ i = 0 ⌊ c j + c − b − 1 a ⌋ i k 1 \sum_{i=0}^{N}i^{k_1}\sum_{j=0}^{\lfloor\frac{ai+b}{c}\rfloor-1}((j+1)^{k_2}-j^{k_2})\\=\sum_{j=0}^{M-1}((j+1)^{k_2}-j^{k_2})\sum_{i=0}^{N}i^{k_1}[\lfloor\frac{ai+b}{c}\rfloor\geq j+1]\\=\sum_{j=0}^{M-1}((j+1)^{k_2}-j^{k_2})\sum_{i=0}^{N}i^{k_1}[i>\lfloor\frac{cj+c-b-1}{a}\rfloor]\\=\sum_{j=0}^{M-1}((j+1)^{k_2}-j^{k_2})\sum_{i=0}^{N}i^{k_1}-\sum_{j=0}^{M-1}((j+1)^{k_2}-j^{k_2})\sum_{i=0}^{\lfloor\frac{cj+c-b-1}{a}\rfloor}i^{k_1} i=0∑Nik1j=0∑⌊cai+b⌋−1((j+1)k2−jk2)=j=0∑M−1((j+1)k2−jk2)i=0∑Nik1[⌊cai+b⌋≥j+1]=j=0∑M−1((j+1)k2−jk2)i=0∑Nik1[i>⌊acj+c−b−1⌋]=j=0∑M−1((j+1)k2−jk2)i=0∑Nik1−j=0∑M−1((j+1)k2−jk2)i=0∑⌊acj+c−b−1⌋ik1- 靠前的求和符号可以直接计算,考虑靠后的求和符号。
- ( j + 1 ) k 2 − j k 2 (j+1)^{k_2}-j^{k_2} (j+1)k2−jk2 显然是关于 j j j 的 k 2 − 1 k_2-1 k2−1 次多项式,而 ∑ i = 0 ⌊ c j + c − b − 1 a ⌋ i k 1 \sum_{i=0}^{\lfloor\frac{cj+c-b-1}{a}\rfloor}i^{k_1} ∑i=0⌊acj+c−b−1⌋ik1 也是关于 ⌊ c j + c − b − 1 a ⌋ \lfloor\frac{cj+c-b-1}{a}\rfloor ⌊acj+c−b−1⌋ 的 k 1 + 1 k_1+1 k1+1 次多项式,不妨令为 A ( x ) , B ( x ) A(x),B(x) A(x),B(x) 。
- 那么
∑ j = 0 M − 1 ( ( j + 1 ) k 2 − j k 2 ) ∑ i = 0 ⌊ c j + c − b − 1 a ⌋ i k 1 = ∑ i = 0 M − 1 ∑ j = 0 k 2 − 1 A i i j ∑ k = 0 k 1 + 1 B k ⌊ c j + c − b − 1 a ⌋ k = ∑ j = 0 k 2 − 1 A i ∑ k = 0 k 1 + 1 B k ∑ i = 0 M − 1 i j ⌊ c j + c − b − 1 a ⌋ k \sum_{j=0}^{M-1}((j+1)^{k_2}-j^{k_2})\sum_{i=0}^{\lfloor\frac{cj+c-b-1}{a}\rfloor}i^{k_1}\\=\sum_{i=0}^{M-1}\sum_{j=0}^{k_2-1}A_ii^j\sum_{k=0}^{k_1+1}B_k\lfloor\frac{cj+c-b-1}{a}\rfloor^{k}\\=\sum_{j=0}^{k_2-1}A_i\sum_{k=0}^{k_1+1}B_k\sum_{i=0}^{M-1}i^j\lfloor\frac{cj+c-b-1}{a}\rfloor^{k} j=0∑M−1((j+1)k2−jk2)i=0∑⌊acj+c−b−1⌋ik1=i=0∑M−1j=0∑k2−1Aiijk=0∑k1+1Bk⌊acj+c−b−1⌋k=j=0∑k2−1Aik=0∑k1+1Bki=0∑M−1ij⌊acj+c−b−1⌋k
递归计算 f u n c ( M − 1 , c , c − b − 1 , a ) func(M-1,c,c-b-1,a) func(M−1,c,c−b−1,a) 即可。- 注意到在递归中 ( a , c ) → ( a % c , c ) → ( c , a % c ) (a,c)\rightarrow(a\%c,c)\rightarrow(c,a\%c) (a,c)→(a%c,c)→(c,a%c) ,因此递归层数为 O ( L o g V ) O(LogV) O(LogV) 。
- 时间复杂度 O ( T K 4 L o g V ) O(TK^4LogV) O(TK4LogV) 。
【代码】
#include
using namespace std; const int MAXN = 15; const int P = 1e9 + 7; typedef long long ll; typedef long double ld; typedef unsigned long long ull; template <typename T> void chkmax(T &x, T y) {x = max(x, y); } template <typename T> void chkmin(T &x, T y) {x = min(x, y); } template <typename T> void read(T &x) { x = 0; int f = 1; char c = getchar(); for (; !isdigit(c); c = getchar()) if (c == '-') f = -f; for (; isdigit(c); c = getchar()) x = x * 10 + c - '0'; x *= f; } template <typename T> void write(T x) { if (x < 0) x = -x, putchar('-'); if (x > 9) write(x / 10); putchar(x % 10 + '0'); } template <typename T> void writeln(T x) { write(x); puts(""); } struct info { int a[MAXN][MAXN]; }; int sum[MAXN][MAXN]; int binom[MAXN][MAXN]; int power(int x, int y) { if (y == 0) return 1; int tmp = power(x, y / 2); if (y % 2 == 0) return 1ll * tmp * tmp % P; else return 1ll * tmp * tmp % P * x % P; } void update(int &x, int y) { x += y; if (x >= P) x -= P; } info func(int n, int a, int b, int c) { assert(n >= 0 && a >= 0 && b >= 0 && c >= 0); info ans; memset(ans.a, 0, sizeof(ans.a)); if (a == 0 || (1ll * a * n + b) / c == 0) { for (int k1 = 0; k1 <= 10; k1++) { int mul = 0, now = 1; for (int i = 0; i <= k1 + 1; i++) { update(mul, 1ll * now * sum[k1][i] % P); now = 1ll * now * n % P; } int base = (1ll * a * n + b) / c % P; now = 1; for (int k2 = 0; k1 + k2 <= 10; k2++) { ans.a[k1][k2] = 1ll * now * mul % P; now = 1ll * now * base % P; } } return ans; } if (a >= c) { info tmp = func(n, a % c, b, c); for (int k1 = 0; k1 <= 10; k1++) for (int k2 = 0; k1 + k2 <= 10; k2++) { int now = 1, base = a / c; for (int i = 0; i <= k2; i++) { update(ans.a[k1][k2], 1ll * binom[k2][i] * now % P * tmp.a[k1 + i][k2 - i] % P); now = 1ll * now * base % P; } } return ans; } if (b >= c) { info tmp = func(n, a, b % c, c); for (int k1 = 0; k1 <= 10; k1++) for (int k2 = 0; k1 + k2 <= 10; k2++) { int now = 1, base = b / c; for (int i = 0; i <= k2; i++) { update(ans.a[k1][k2], 1ll * binom[k2][i] * now % P * tmp.a[k1][k2 - i] % P); now = 1ll * now * base % P; } } return ans; } int m = (1ll * a * n + b) / c; info tmp = func(m - 1, c, c - b - 1, a); for (int k1 = 0; k1 <= 10; k1++) { int all = 0, now = 1; for (int i = 0; i <= k1 + 1; i++) { update(all, 1ll * now * sum[k1][i] % P); now = 1ll * now * n % P; } for (int k2 = 0; k1 + k2 <= 10; k2++) { ans.a[k1][k2] = 1ll * power(m, k2) * all % P; for (int i = 0; i <= k2 - 1; i++) for (int j = 0; j <= k1 + 1; j++) { int coef = 1ll * binom[k2][i] * sum[k1][j] % P; update(ans.a[k1][k2], P - 1ll * coef * tmp.a[i][j] % P); } } } return ans; } void Lagrange(int n, int *x, int *y, int *a) { static int p[MAXN], q[MAXN]; memset(p, 0, sizeof(p)); p[0] = 1; for (int i = 1; i <= n; i++) { for (int j = i - 1; j >= 0; j--) { p[j + 1] = (p[j + 1] + p[j]) % P; p[j] = (P - 1ll * p[j] * x[i] % P) % P; } } for (int i = 1; i <= n; i++) { memset(q, 0, sizeof(q)); for (int j = n - 1; j >= 0; j--) q[j] = (p[j + 1] + 1ll * q[j + 1] * x[i]) % P; int now = 1; for (int j = 1; j <= n; j++) if (j != i) now = 1ll * now * (x[i] - x[j]) % P; now = power((P + now) % P, P - 2); for (int j = 0; j <= n; j++) q[j] = 1ll * q[j] * now % P; for (int j = 0; j <= n; j++) a[j] = (a[j] + 1ll * q[j] * y[i]) % P; } } int main() { for (int i = 0; i <= 10; i++) { static int pos[MAXN], now[MAXN]; now[0] = power(0, i); for (int j = 1; j <= i + 2; j++) { now[j] = (now[j - 1] + power(j, i)) % P; pos[j] = j; } Lagrange(i + 2, pos, now, sum[i]); } for (int i = 0; i <= 10; i++) { binom[i][0] = 1; for (int j = 1; j <= i; j++) binom[i][j] = binom[i - 1][j - 1] + binom[i - 1][j]; } int T; read(T); while (T--) { int n, a, b, c, k1, k2; read(n), read(a), read(b), read(c), read(k1), read(k2); writeln(func(n, a, b, c).a[k1][k2]); } return 0; }