关联规则(Association Rules)是反映一个事物与其他事物之间的相互依存性和关联性,是数据挖掘的一个重要技术,用于从大量数据中挖掘出有价值的数据项之间的相关关系。
所谓数据挖掘就是以某种方式分析源数据,从中发现一些潜在的有用的信息 。即数据挖掘又可以称作知识发现,而机器学习算法则是这种“某种方式”。
举个简单的例子(尿布和啤酒太经典):通过调研超市顾客购买的东西,可以发现30%的顾客会同时购买床单和枕套,而在购买床单的顾客中有80%的人购买了枕套,这就存在一种隐含的关系:床单→枕套,也就是说购买床单的顾客会有很大可能购买枕套,因此商场可以将床单和枕套放在同一个购物区,方便顾客购买。
项目:交易数据库中的一个字段,对超市的交易来说一般是指一次交易中的一个物品,如:牛奶
事务:某个客户在一次交易中,发生的所有项目的集合,如(牛奶,面包,啤酒)
项集:包含若干个项目的集合(一次事务中的),一般会大于0个
支持度(Support):项集(X,Y)在总项集中出现的概率
频繁项集(Frequent item Sets):某个项集的支持度大于设定阈值(人为设定或者根据数据分布或者经验来设定),即称这个项集为频繁项集
置信度(Confidence):在先决条件X发生的条件下,由关联规则(X->Y)推出Y的概率
提升度:表示含有X的条件下同事含有Y的概率,与无论含不含有Y的
假如有一条规则:牛肉—>鸡肉,那么同时购买牛肉和鸡肉的顾客比例是3/7,而购买牛肉的顾客当中也购买了鸡肉的顾客比例是3/4。这两个比例参数是很重要的衡量指标,它们在关联规则中称作支持度(support)和置信度(confidence)。对于规则:牛肉—>鸡肉,它的支持度为3/7,表示在所有顾客当中有3/7同时购买牛肉和鸡肉,其反应了同时购买牛肉和鸡肉的顾客在所有顾客当中的覆盖范围;它的置信度为3/4,表示在买了牛肉的顾客当中有3/4的人买了鸡肉,其反应了可预测的程度,即顾客买了牛肉的话有多大可能性买鸡肉。
支持度:P(AUB),即A和B这两个项集在事务集D中同时出现的概率。
support(A=>B) = P(AUB)
置信度:P(B|A),即在出现项集A的事务集D中,项集B也同时的概率。
对于某条规则:(A = a)−>(B = b)(support=30%,confident=60%);其中support=30%表示在所有的数据记录中,同时出现A=a和B=b的概率为30%;confident=60%表示在所有的数据记录中,在出现A=a的情况下出现B=b的概率为60%,也就是条件概率。支持度揭示了A=a和B=b同时出现的概率,置信度揭示了当A=a出现时,B=b是否会一定出现的概率。
(1)如果支持度和置信度闭值设置的过高,虽然可以减少挖掘时间,但是容易造成一些隐含在数据中非频繁特征项被忽略掉,难以发现足够有用的规则;
(2)如果支持度和置信度闭值设置的过低,又有可能产生过多的规则,甚至产生大量冗余和无效的规则,同时由于算法存在的固有问题,会导致高负荷的计算量,大大增加挖掘时间。
Apriori算法简介
Apriori算法:使用候选项集找频发项集
Apriori算法是一种罪有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。
Apriori原理:如果某个项集是频繁的,那么它的所有子集也是频繁的。该定理的逆反定理为:如果某一个项集是非频繁的,那么它的所有超集(包含该集合的集合)也是非频繁的。Apriori原理的出现,可以在得知某些项集是非频繁之后,不需要计算该集合的超集,有效地避免项集数目的指数增长,从而在合理时间内计算出频繁项集。
在图中,已知阴影项集{2,3}是非频繁的。利用这个知识,我们就知道项集{0,2,3},{1,2,3}以及{0,1,2,3}也是非频繁的。也就是说,一旦计算出了{2,3}的支持度,知道它是非频繁的后,就可以紧接着排除{0,2,3}、{1,2,3}和{0,1,2,3}。
算法思想
①找出所有的频集,这些项集出现的频繁性至少和预定义的最小支持度一样。
②由频集产生强关联规则,这些规则必须满足最小支持度和最小可信度。
③使用第1步找到的频集产生期望的规则,产生只包含集合的项的所有规则,其中每一条规则的右部只有一项,这里采用的是中规则的定义。
④一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被留下来。为了生成所有频集,使用了递推的方法。
算法步骤
代码实现
#Apriori算法实现
from numpy import *
def loadDataSet():
return [[1, 3, 4], [2, 3, 5], [1, 2, 3, 5], [2, 5]]
# 获取候选1项集,dataSet为事务集。返回一个list,每个元素都是set集合
def createC1(dataSet):
C1 = [] # 元素个数为1的项集(非频繁项集,因为还没有同最小支持度比较)
for transaction in dataSet:
for item in transaction:
if not [item] in C1:
C1.append([item])
C1.sort() # 这里排序是为了,生成新的候选集时可以直接认为两个n项候选集前面的部分相同
# 因为除了候选1项集外其他的候选n项集都是以二维列表的形式存在,所以要将候选1项集的每一个元素都转化为一个单独的集合。
return list(map(frozenset, C1)) #map(frozenset, C1)的语义是将C1由Python列表转换为不变集合(frozenset,Python中的数据结构)
# 找出候选集中的频繁项集
# dataSet为全部数据集,Ck为大小为k(包含k个元素)的候选项集,minSupport为设定的最小支持度
def scanD(dataSet, Ck, minSupport):
ssCnt = {} # 记录每个候选项的个数
for tid in dataSet:
for can in Ck:
if can.issubset(tid):
ssCnt[can] = ssCnt.get(can, 0) + 1 # 计算每一个项集出现的频率
numItems = float(len(dataSet))
retList = []
supportData = {}
for key in ssCnt:
support = ssCnt[key] / numItems
if support >= minSupport:
retList.insert(0, key) #将频繁项集插入返回列表的首部
supportData[key] = support
return retList, supportData #retList为在Ck中找出的频繁项集(支持度大于minSupport的),supportData记录各频繁项集的支持度
# 通过频繁项集列表Lk和项集个数k生成候选项集C(k+1)。
def aprioriGen(Lk, k):
retList = []
lenLk = len(Lk)
for i in range(lenLk):
for j in range(i + 1, lenLk):
# 前k-1项相同时,才将两个集合合并,合并后才能生成k+1项
L1 = list(Lk[i])[:k-2]; L2 = list(Lk[j])[:k-2] # 取出两个集合的前k-1个元素
L1.sort(); L2.sort()
if L1 == L2:
retList.append(Lk[i] | Lk[j])
return retList
# 获取事务集中的所有的频繁项集
# Ck表示项数为k的候选项集,最初的C1通过createC1()函数生成。Lk表示项数为k的频繁项集,supK为其支持度,Lk和supK由scanD()函数通过Ck计算而来。
def apriori(dataSet, minSupport=0.5):
C1 = createC1(dataSet) # 从事务集中获取候选1项集
D = list(map(set, dataSet)) # 将事务集的每个元素转化为集合
L1, supportData = scanD(D, C1, minSupport) # 获取频繁1项集和对应的支持度
L = [L1] # L用来存储所有的频繁项集
k = 2
while (len(L[k-2]) > 0): # 一直迭代到项集数目过大而在事务集中不存在这种n项集
Ck = aprioriGen(L[k-2], k) # 根据频繁项集生成新的候选项集。Ck表示项数为k的候选项集
Lk, supK = scanD(D, Ck, minSupport) # Lk表示项数为k的频繁项集,supK为其支持度
L.append(Lk);supportData.update(supK) # 添加新频繁项集和他们的支持度
k += 1
return L, supportData
if __name__=='__main__':
dataSet = loadDataSet() # 获取事务集。每个元素都是列表
# C1 = createC1(dataSet) # 获取候选1项集。每个元素都是集合
# D = list(map(set, dataSet)) # 转化事务集的形式,每个元素都转化为集合。
# L1, suppDat = scanD(D, C1, 0.5)
# print(L1,suppDat)
L, suppData = apriori(dataSet,minSupport=0.7)
print(L,suppData)
FP-growth算法
Apriori算法是关联规则的基本算法,很多用于发现关联规则的算法都是基于Apriori算法,但Apriori算法需要多次访问数据库,具有严重的性能问题。FP-Growth算法只需要两次扫描数据库,相比于Apriori减少了I/O操作,克服了Apriori算法需要多次扫描数据库的问题。
算法步骤:
构建FP树
从FP树中挖掘频繁项集
实现流程:
第一步:创建FP树
第二步:挖掘频繁项集
代码实现:
# FP树类
class treeNode:
def __init__(self, nameValue, numOccur, parentNode):
self.name = nameValue #节点元素名称,在构造时初始化为给定值
self.count = numOccur # 出现次数,在构造时初始化为给定值
self.nodeLink = None # 指向下一个相似节点的指针,默认为None
self.parent = parentNode # 指向父节点的指针,在构造时初始化为给定值
self.children = {} # 指向子节点的字典,以子节点的元素名称为键,指向子节点的指针为值,初始化为空字典
# 增加节点的出现次数值
def inc(self, numOccur):
self.count += numOccur
# 输出节点和子节点的FP树结构
def disp(self, ind=1):
print(' ' * ind, self.name, ' ', self.count)
for child in self.children.values():
child.disp(ind + 1)
# =======================================================构建FP树==================================================
# 对不是第一个出现的节点,更新头指针块。就是添加到相似元素链表的尾部
def updateHeader(nodeToTest, targetNode):
while (nodeToTest.nodeLink != None):
nodeToTest = nodeToTest.nodeLink
nodeToTest.nodeLink = targetNode
# 根据一个排序过滤后的频繁项更新FP树
def updateTree(items, inTree, headerTable, count):
if items[0] in inTree.children:
# 有该元素项时计数值+1
inTree.children[items[0]].inc(count)
else:
# 没有这个元素项时创建一个新节点
inTree.children[items[0]] = treeNode(items[0], count, inTree)
# 更新头指针表或前一个相似元素项节点的指针指向新节点
if headerTable[items[0]][1] == None: # 如果是第一次出现,则在头指针表中增加对该节点的指向
headerTable[items[0]][1] = inTree.children[items[0]]
else:
updateHeader(headerTable[items[0]][1], inTree.children[items[0]])
if len(items) > 1:
# 对剩下的元素项迭代调用updateTree函数
updateTree(items[1::], inTree.children[items[0]], headerTable, count)
# 主程序。创建FP树。dataSet为事务集,为一个字典,键为每个事物,值为该事物出现的次数。minSup为最低支持度
def createTree(dataSet, minSup=1):
# 第一次遍历数据集,创建头指针表
headerTable = {}
for trans in dataSet:
for item in trans:
headerTable[item] = headerTable.get(item, 0) + dataSet[trans]
# 移除不满足最小支持度的元素项
keys = list(headerTable.keys()) # 因为字典要求在迭代中不能修改,所以转化为列表
for k in keys:
if headerTable[k] < minSup:
del(headerTable[k])
# 空元素集,返回空
freqItemSet = set(headerTable.keys())
if len(freqItemSet) == 0:
return None, None
# 增加一个数据项,用于存放指向相似元素项指针
for k in headerTable:
headerTable[k] = [headerTable[k], None] # 每个键的值,第一个为个数,第二个为下一个节点的位置
retTree = treeNode('Null Set', 1, None) # 根节点
# 第二次遍历数据集,创建FP树
for tranSet, count in dataSet.items():
localD = {} # 记录频繁1项集的全局频率,用于排序
for item in tranSet:
if item in freqItemSet: # 只考虑频繁项
localD[item] = headerTable[item][0] # 注意这个[0],因为之前加过一个数据项
if len(localD) > 0:
orderedItems = [v[0] for v in sorted(localD.items(), key=lambda p: p[1], reverse=True)] # 排序
updateTree(orderedItems, retTree, headerTable, count) # 更新FP树
return retTree, headerTable
# =================================================查找元素条件模式基===============================================
# 直接修改prefixPath的值,将当前节点leafNode添加到prefixPath的末尾,然后递归添加其父节点。
# prefixPath就是一条从treeNode(包括treeNode)到根节点(不包括根节点)的路径
def ascendTree(leafNode, prefixPath):
if leafNode.parent != None:
prefixPath.append(leafNode.name)
ascendTree(leafNode.parent, prefixPath)
# 为给定元素项生成一个条件模式基(前缀路径)。basePet表示输入的频繁项,treeNode为当前FP树中对应的第一个节点
# 函数返回值即为条件模式基condPats,用一个字典表示,键为前缀路径,值为计数值。
def findPrefixPath(basePat, treeNode):
condPats = {} # 存储条件模式基
while treeNode != None:
prefixPath = [] # 用于存储前缀路径
ascendTree(treeNode, prefixPath) # 生成前缀路径
if len(prefixPath) > 1:
condPats[frozenset(prefixPath[1:])] = treeNode.count # 出现的数量就是当前叶子节点的数量
treeNode = treeNode.nodeLink # 遍历下一个相同元素
return condPats
# =================================================递归查找频繁项集===============================================
# 根据事务集获取FP树和频繁项。
# 遍历频繁项,生成每个频繁项的条件FP树和条件FP树的频繁项
# 这样每个频繁项与他条件FP树的频繁项都构成了频繁项集
# inTree和headerTable是由createTree()函数生成的事务集的FP树。
# minSup表示最小支持度。
# preFix请传入一个空集合(set([])),将在函数中用于保存当前前缀。
# freqItemList请传入一个空列表([]),将用来储存生成的频繁项集。
def mineTree(inTree, headerTable, minSup, preFix, freqItemList):
# 对频繁项按出现的数量进行排序进行排序
sorted_headerTable = sorted(headerTable.items(), key=lambda p: p[1][0]) #返回重新排序的列表。每个元素是一个元组,[(key,[num,treeNode],())
bigL = [v[0] for v in sorted_headerTable] # 获取频繁项
for basePat in bigL:
newFreqSet = preFix.copy() # 新的频繁项集
newFreqSet.add(basePat) # 当前前缀添加一个新元素
freqItemList.append(newFreqSet) # 所有的频繁项集列表
condPattBases = findPrefixPath(basePat, headerTable[basePat][1]) # 获取条件模式基。就是basePat元素的所有前缀路径。它像一个新的事务集
myCondTree, myHead = createTree(condPattBases, minSup) # 创建条件FP树
if myHead != None:
# 用于测试
print('conditional tree for:', newFreqSet)
myCondTree.disp()
mineTree(myCondTree, myHead, minSup, newFreqSet, freqItemList) # 递归直到不再有元素
# 生成数据集
def loadSimpDat():
simpDat = [['r', 'z', 'h', 'j', 'p'],
['z', 'y', 'x', 'w', 'v', 'u', 't', 's'],
['z'],
['r', 'x', 'n', 'o', 's'],
['y', 'r', 'x', 'z', 'q', 't', 'p'],
['y', 'z', 'x', 'e', 'q', 's', 't', 'm']]
return simpDat
# 将数据集转化为目标格式
def createInitSet(dataSet):
retDict = {}
for trans in dataSet:
retDict[frozenset(trans)] = 1
return retDict
if __name__=='__main__':
minSup =3
simpDat = loadSimpDat() # 加载数据集
initSet = createInitSet(simpDat) # 转化为符合格式的事务集
myFPtree, myHeaderTab = createTree(initSet, minSup) # 形成FP树
# myFPtree.disp() # 打印树
freqItems = [] # 用于存储频繁项集
mineTree(myFPtree, myHeaderTab, minSup, set([]), freqItems) # 获取频繁项集
print(freqItems) # 打印频繁项集