ConnectInterceptor拦截器分析

在分析完CacheInterceptor拦截器后,我们再来看下ConnectInterceptor这个拦截器,其主要作用就是与服务器建立连接。
直接看它的intercept方法:

public Response intercept(Chain chain) throws IOException {
    RealInterceptorChain realChain = (RealInterceptorChain) chain;
    Request request = realChain.request();

    // 获取StreamAllocation对象
    StreamAllocation streamAllocation = realChain.streamAllocation();

    // We need the network to satisfy this request. Possibly for validating a conditional GET.
    boolean doExtensiveHealthChecks = !request.method().equals("GET");
    // 初始化HttpCodec对象
    HttpCodec httpCodec = streamAllocation.newStream(client, chain, doExtensiveHealthChecks);
    // 通过StreamAllocation获取连接对象
    RealConnection connection = streamAllocation.connection();

    // 传入参数,调用下一个拦截器处理
    return realChain.proceed(request, streamAllocation, httpCodec, connection);
}

该方法主要做了一下几个操作:

1、获取StreamAllocation对象,通过该对象来初始化HttpCodec对象,这个HttpCodec对象用于编码request和解码response,并且对不同http协议(http1.1和http/2)的请求和响应做处理。

2、通过StreamAllocation获取连接对象RealConnection,RealConnection对象负责实际进行与服务器交互的类。

3、将这几个对象作为参数,传入到下一个拦截器CallServerIntercept(实际与服务器进行交互)中处理。

初始化HttpCodec对象

看下StreamAllocation的newStream方法的实现细节:

public HttpCodec newStream(OkHttpClient client, Interceptor.Chain chain, boolean doExtensiveHealthChecks) {

    // 获取连接超时时间、读写超时时间等信息
    int connectTimeout = chain.connectTimeoutMillis();
    int readTimeout = chain.readTimeoutMillis();
    int writeTimeout = chain.writeTimeoutMillis();
    int pingIntervalMillis = client.pingIntervalMillis();
    boolean connectionRetryEnabled = client.retryOnConnectionFailure();

    try {
        // 查找健康可用连接
        RealConnection resultConnection = findHealthyConnection(connectTimeout, readTimeout,
                writeTimeout, pingIntervalMillis, connectionRetryEnabled, doExtensiveHealthChecks);
        // 通过连接初始化resultCodec对象
        HttpCodec resultCodec = resultConnection.newCodec(client, chain, this);

        synchronized (connectionPool) {
            codec = resultCodec;
            return resultCodec;
        }
    } catch (IOException e) {
        throw new RouteException(e);
    }
}

查找一个健康可用的连接,通过RealConnection的newCodec来初始化HttpCodec对象,我们来看看查找可用连接的逻辑(findHealthyConnection方法):

private RealConnection findHealthyConnection(int connectTimeout, int readTimeout,
                                                 int writeTimeout, int pingIntervalMillis, boolean connectionRetryEnabled,
                                                 boolean doExtensiveHealthChecks) throws IOException {
    while (true) {
        // 查找连接,使用已存在的可用连接或从连接池中取,没有则创建一条连接
        RealConnection candidate = findConnection(connectTimeout, readTimeout, writeTimeout,
                pingIntervalMillis, connectionRetryEnabled);

        // If this is a brand new connection, we can skip the extensive health checks.
        synchronized (connectionPool) {
            // 如果是新建的连接,则直接返回,跳过健康检查
            if (candidate.successCount == 0) {
                return candidate;
            }
        }

        // Do a (potentially slow) check to confirm that the pooled connection is still good. If it
        // isn't, take it out of the pool and start again.
        // 判断连接是否健康可用
        if (!candidate.isHealthy(doExtensiveHealthChecks)) {
            // 禁止新流创建
            noNewStreams();
            continue;
        }

        return candidate;
    }
}

通过一个while循环查找可用连接,如果当前是新建的连接,则直接返回,跳过健康检查,否则,需要判断当前连接是否健康可用,如果不是,则禁止新流的创建,并重新进入循环查找连接。

实际查找连接的方法(findConnection):

private RealConnection findConnection(int connectTimeout, int readTimeout, int writeTimeout,
                                          int pingIntervalMillis, boolean connectionRetryEnabled) throws IOException {
    // 是否从连接池中找到连接
    boolean foundPooledConnection = false;
    // 需要返回的连接对象
    RealConnection result = null;
    // 对应找到的路由
    Route selectedRoute = null;
    // 可释放的连接
    Connection releasedConnection;
    // 需要关闭的socket
    Socket toClose;
    synchronized (connectionPool) {
        // 异常判断,已释放、codec不为空、请求已取消
        if (released) throw new IllegalStateException("released");
        if (codec != null) throw new IllegalStateException("codec != null");
        if (canceled) throw new IOException("Canceled");

        // Attempt to use an already-allocated connection. We need to be careful here because our
        // already-allocated connection may have been restricted from creating new streams.
        // 使用已存在的connection对象,需要注意到是该连接可能已经不能创建新的流
        releasedConnection = this.connection;
        // 如果不能创建新的流,则释放并返回对应的要关闭的socket对象(此时,connection已置为null),否则,返回null
        toClose = releaseIfNoNewStreams();
        if (this.connection != null) {
            // We had an already-allocated connection and it's good.
            // 使用已存在的“健康”的连接
            result = this.connection;
            releasedConnection = null;
        }
        if (!reportedAcquired) {
            // If the connection was never reported acquired, don't report it as released!
            releasedConnection = null;
        }

        // 已存在的连接是不可用的
        if (result == null) {
            // Attempt to get a connection from the pool.
            //从连接池中取,将获取到的引用赋值给connection变量
            Internal.instance.acquire(connectionPool, address, this, null);
            if (connection != null) {
                // 从连接池中找到可使用的连接
                foundPooledConnection = true;
                result = connection;
            } else {
                // 连接池中没有连接,赋值给对应路由
                selectedRoute = route;
            }
        }
    }
    // 关闭socket
    closeQuietly(toClose);

    // 释放连接的回调
    if (releasedConnection != null) {
        eventListener.connectionReleased(call, releasedConnection);
    }

    // 从连接池中获取到连接,则回调
    if (foundPooledConnection) {
        eventListener.connectionAcquired(call, result);
    }

    // 找到已存在可用的或从连接池中取出的connection对象,则直接返回该变量
    if (result != null) {
        // If we found an already-allocated or pooled connection, we're done.
        return result;
    }

    // If we need a route selection, make one. This is a blocking operation.
    // 切换路由
    boolean newRouteSelection = false;
    if (selectedRoute == null && (routeSelection == null || !routeSelection.hasNext())) {
        newRouteSelection = true;
        routeSelection = routeSelector.next();
    }

    synchronized (connectionPool) {
        if (canceled) throw new IOException("Canceled");

        if (newRouteSelection) {
            // Now that we have a set of IP addresses, make another attempt at getting a connection from
            // the pool. This could match due to connection coalescing.
            List<Route> routes = routeSelection.getAll();
            // 遍历路由集合,再从连接池中取
            for (int i = 0, size = routes.size(); i < size; i++) {
                Route route = routes.get(i);
                Internal.instance.acquire(connectionPool, address, this, route);
                if (connection != null) {
                    // 找到可用的连接
                    foundPooledConnection = true;
                    result = connection;
                    this.route = route;
                    break;
                }
            }
        }

        // 如果没有找到可用的连接,则创建一条连接
        if (!foundPooledConnection) {
            if (selectedRoute == null) {
                selectedRoute = routeSelection.next();
            }

            // Create a connection and assign it to this allocation immediately. This makes it possible
            // for an asynchronous cancel() to interrupt the handshake we're about to do.
            // 创建一条连接
            route = selectedRoute;
            refusedStreamCount = 0;
            result = new RealConnection(connectionPool, selectedRoute);
            // 往连接中添加流
            acquire(result, false);
        }
    }

    // If we found a pooled connection on the 2nd time around, we're done.
    // 如果第二次找到可用的连接,则返回可用连接
    if (foundPooledConnection) {
        eventListener.connectionAcquired(call, result);
        return result;
    }

    // Do TCP + TLS handshakes. This is a blocking operation.
    // 连接,开始三次握手
    result.connect(connectTimeout, readTimeout, writeTimeout, pingIntervalMillis,
            connectionRetryEnabled, call, eventListener);
    // RouteDatabase:A blacklist of failed routes to avoid when creating a new connection to a target address.
    // 将该路由从错误缓存记录中移除
    routeDatabase().connected(result.route());

    Socket socket = null;
    synchronized (connectionPool) {
        reportedAcquired = true;

        // Pool the connection.
        // 将这条连接放入连接池
        Internal.instance.put(connectionPool, result);

        // If another multiplexed connection to the same address was created concurrently, then
        // release this connection and acquire that one.
        // 如果有其他复数连接到相同地址, 则删除重复连接
        if (result.isMultiplexed()) {
            socket = Internal.instance.deduplicate(connectionPool, address, this);
            result = connection;
        }
    }
    // 关闭socket
    closeQuietly(socket);

    eventListener.connectionAcquired(call, result);
    return result;
}

整理下该方法的逻辑:

1、拿到已存在的Connection对象,判断其是否可用(该连接可能不能创建新的流了),如果不能创建新流,则释放该Connection对象。

2、如果已存在的连接是不可用的,就从连接池中找可用连接(有可能找不到对应的可用连接)。

3、如果已存在的Connection对象可用或从连接池中可以取出connection对象,则直接返回。

4、都找不到可用连接,则切换路由重新从线程池中找可用连接,如果这次可以找到可用的连接,则返回该连接,否则,则创建一条连接。

5、创建一条连接后,开始连接,进行三次握手,并将这条连接放入连接池中。

在此,我们就成功找到了一条可用连接,然后我们回到newStream方法,通过连接来初始化HttpCodec对象:

public HttpCodec newCodec(OkHttpClient client, Interceptor.Chain chain,
                              StreamAllocation streamAllocation) throws SocketException {
    if (http2Connection != null) {
        return new Http2Codec(client, chain, streamAllocation, http2Connection);
    } else {
        socket.setSoTimeout(chain.readTimeoutMillis());
        source.timeout().timeout(chain.readTimeoutMillis(), MILLISECONDS);
        sink.timeout().timeout(chain.writeTimeoutMillis(), MILLISECONDS);
        return new Http1Codec(client, streamAllocation, source, sink);
    }
}

通过判断不同http协议(http1.1和http/2)来创建不同的HttpCodec对象。

通过StreamAllocation获取连接对象

在初始化HttpCodec对象的过程中,就已经通过findConnection方法查找到健康可用的连接对象了,所以我们可以通过StreamAllocation对象的connection方法直接获取到连接对象。

调用下一个拦截器

将初始化得到的HttpCodec和连接对象传入到下一拦截器进行处理,在此拦截器,我们就对RealInterceptorChain的几个属性都进行了初始化,用于在最后一个与服务器进行交互的拦截器中使用。

总结

该拦截器主要是与服务器建立连接,从而获取一个可以与服务器端进行连接的连接对象,而实际与服务器进行交互的逻辑则在CallServerInterceptor里。

你可能感兴趣的:(Android)