在分析完CacheInterceptor拦截器后,我们再来看下ConnectInterceptor这个拦截器,其主要作用就是与服务器建立连接。
直接看它的intercept方法:
public Response intercept(Chain chain) throws IOException {
RealInterceptorChain realChain = (RealInterceptorChain) chain;
Request request = realChain.request();
// 获取StreamAllocation对象
StreamAllocation streamAllocation = realChain.streamAllocation();
// We need the network to satisfy this request. Possibly for validating a conditional GET.
boolean doExtensiveHealthChecks = !request.method().equals("GET");
// 初始化HttpCodec对象
HttpCodec httpCodec = streamAllocation.newStream(client, chain, doExtensiveHealthChecks);
// 通过StreamAllocation获取连接对象
RealConnection connection = streamAllocation.connection();
// 传入参数,调用下一个拦截器处理
return realChain.proceed(request, streamAllocation, httpCodec, connection);
}
该方法主要做了一下几个操作:
1、获取StreamAllocation对象,通过该对象来初始化HttpCodec对象,这个HttpCodec对象用于编码request和解码response,并且对不同http协议(http1.1和http/2)的请求和响应做处理。
2、通过StreamAllocation获取连接对象RealConnection,RealConnection对象负责实际进行与服务器交互的类。
3、将这几个对象作为参数,传入到下一个拦截器CallServerIntercept(实际与服务器进行交互)中处理。
看下StreamAllocation的newStream方法的实现细节:
public HttpCodec newStream(OkHttpClient client, Interceptor.Chain chain, boolean doExtensiveHealthChecks) {
// 获取连接超时时间、读写超时时间等信息
int connectTimeout = chain.connectTimeoutMillis();
int readTimeout = chain.readTimeoutMillis();
int writeTimeout = chain.writeTimeoutMillis();
int pingIntervalMillis = client.pingIntervalMillis();
boolean connectionRetryEnabled = client.retryOnConnectionFailure();
try {
// 查找健康可用连接
RealConnection resultConnection = findHealthyConnection(connectTimeout, readTimeout,
writeTimeout, pingIntervalMillis, connectionRetryEnabled, doExtensiveHealthChecks);
// 通过连接初始化resultCodec对象
HttpCodec resultCodec = resultConnection.newCodec(client, chain, this);
synchronized (connectionPool) {
codec = resultCodec;
return resultCodec;
}
} catch (IOException e) {
throw new RouteException(e);
}
}
查找一个健康可用的连接,通过RealConnection的newCodec来初始化HttpCodec对象,我们来看看查找可用连接的逻辑(findHealthyConnection方法):
private RealConnection findHealthyConnection(int connectTimeout, int readTimeout,
int writeTimeout, int pingIntervalMillis, boolean connectionRetryEnabled,
boolean doExtensiveHealthChecks) throws IOException {
while (true) {
// 查找连接,使用已存在的可用连接或从连接池中取,没有则创建一条连接
RealConnection candidate = findConnection(connectTimeout, readTimeout, writeTimeout,
pingIntervalMillis, connectionRetryEnabled);
// If this is a brand new connection, we can skip the extensive health checks.
synchronized (connectionPool) {
// 如果是新建的连接,则直接返回,跳过健康检查
if (candidate.successCount == 0) {
return candidate;
}
}
// Do a (potentially slow) check to confirm that the pooled connection is still good. If it
// isn't, take it out of the pool and start again.
// 判断连接是否健康可用
if (!candidate.isHealthy(doExtensiveHealthChecks)) {
// 禁止新流创建
noNewStreams();
continue;
}
return candidate;
}
}
通过一个while循环查找可用连接,如果当前是新建的连接,则直接返回,跳过健康检查,否则,需要判断当前连接是否健康可用,如果不是,则禁止新流的创建,并重新进入循环查找连接。
实际查找连接的方法(findConnection):
private RealConnection findConnection(int connectTimeout, int readTimeout, int writeTimeout,
int pingIntervalMillis, boolean connectionRetryEnabled) throws IOException {
// 是否从连接池中找到连接
boolean foundPooledConnection = false;
// 需要返回的连接对象
RealConnection result = null;
// 对应找到的路由
Route selectedRoute = null;
// 可释放的连接
Connection releasedConnection;
// 需要关闭的socket
Socket toClose;
synchronized (connectionPool) {
// 异常判断,已释放、codec不为空、请求已取消
if (released) throw new IllegalStateException("released");
if (codec != null) throw new IllegalStateException("codec != null");
if (canceled) throw new IOException("Canceled");
// Attempt to use an already-allocated connection. We need to be careful here because our
// already-allocated connection may have been restricted from creating new streams.
// 使用已存在的connection对象,需要注意到是该连接可能已经不能创建新的流
releasedConnection = this.connection;
// 如果不能创建新的流,则释放并返回对应的要关闭的socket对象(此时,connection已置为null),否则,返回null
toClose = releaseIfNoNewStreams();
if (this.connection != null) {
// We had an already-allocated connection and it's good.
// 使用已存在的“健康”的连接
result = this.connection;
releasedConnection = null;
}
if (!reportedAcquired) {
// If the connection was never reported acquired, don't report it as released!
releasedConnection = null;
}
// 已存在的连接是不可用的
if (result == null) {
// Attempt to get a connection from the pool.
//从连接池中取,将获取到的引用赋值给connection变量
Internal.instance.acquire(connectionPool, address, this, null);
if (connection != null) {
// 从连接池中找到可使用的连接
foundPooledConnection = true;
result = connection;
} else {
// 连接池中没有连接,赋值给对应路由
selectedRoute = route;
}
}
}
// 关闭socket
closeQuietly(toClose);
// 释放连接的回调
if (releasedConnection != null) {
eventListener.connectionReleased(call, releasedConnection);
}
// 从连接池中获取到连接,则回调
if (foundPooledConnection) {
eventListener.connectionAcquired(call, result);
}
// 找到已存在可用的或从连接池中取出的connection对象,则直接返回该变量
if (result != null) {
// If we found an already-allocated or pooled connection, we're done.
return result;
}
// If we need a route selection, make one. This is a blocking operation.
// 切换路由
boolean newRouteSelection = false;
if (selectedRoute == null && (routeSelection == null || !routeSelection.hasNext())) {
newRouteSelection = true;
routeSelection = routeSelector.next();
}
synchronized (connectionPool) {
if (canceled) throw new IOException("Canceled");
if (newRouteSelection) {
// Now that we have a set of IP addresses, make another attempt at getting a connection from
// the pool. This could match due to connection coalescing.
List<Route> routes = routeSelection.getAll();
// 遍历路由集合,再从连接池中取
for (int i = 0, size = routes.size(); i < size; i++) {
Route route = routes.get(i);
Internal.instance.acquire(connectionPool, address, this, route);
if (connection != null) {
// 找到可用的连接
foundPooledConnection = true;
result = connection;
this.route = route;
break;
}
}
}
// 如果没有找到可用的连接,则创建一条连接
if (!foundPooledConnection) {
if (selectedRoute == null) {
selectedRoute = routeSelection.next();
}
// Create a connection and assign it to this allocation immediately. This makes it possible
// for an asynchronous cancel() to interrupt the handshake we're about to do.
// 创建一条连接
route = selectedRoute;
refusedStreamCount = 0;
result = new RealConnection(connectionPool, selectedRoute);
// 往连接中添加流
acquire(result, false);
}
}
// If we found a pooled connection on the 2nd time around, we're done.
// 如果第二次找到可用的连接,则返回可用连接
if (foundPooledConnection) {
eventListener.connectionAcquired(call, result);
return result;
}
// Do TCP + TLS handshakes. This is a blocking operation.
// 连接,开始三次握手
result.connect(connectTimeout, readTimeout, writeTimeout, pingIntervalMillis,
connectionRetryEnabled, call, eventListener);
// RouteDatabase:A blacklist of failed routes to avoid when creating a new connection to a target address.
// 将该路由从错误缓存记录中移除
routeDatabase().connected(result.route());
Socket socket = null;
synchronized (connectionPool) {
reportedAcquired = true;
// Pool the connection.
// 将这条连接放入连接池
Internal.instance.put(connectionPool, result);
// If another multiplexed connection to the same address was created concurrently, then
// release this connection and acquire that one.
// 如果有其他复数连接到相同地址, 则删除重复连接
if (result.isMultiplexed()) {
socket = Internal.instance.deduplicate(connectionPool, address, this);
result = connection;
}
}
// 关闭socket
closeQuietly(socket);
eventListener.connectionAcquired(call, result);
return result;
}
整理下该方法的逻辑:
1、拿到已存在的Connection对象,判断其是否可用(该连接可能不能创建新的流了),如果不能创建新流,则释放该Connection对象。
2、如果已存在的连接是不可用的,就从连接池中找可用连接(有可能找不到对应的可用连接)。
3、如果已存在的Connection对象可用或从连接池中可以取出connection对象,则直接返回。
4、都找不到可用连接,则切换路由重新从线程池中找可用连接,如果这次可以找到可用的连接,则返回该连接,否则,则创建一条连接。
5、创建一条连接后,开始连接,进行三次握手,并将这条连接放入连接池中。
在此,我们就成功找到了一条可用连接,然后我们回到newStream方法,通过连接来初始化HttpCodec对象:
public HttpCodec newCodec(OkHttpClient client, Interceptor.Chain chain,
StreamAllocation streamAllocation) throws SocketException {
if (http2Connection != null) {
return new Http2Codec(client, chain, streamAllocation, http2Connection);
} else {
socket.setSoTimeout(chain.readTimeoutMillis());
source.timeout().timeout(chain.readTimeoutMillis(), MILLISECONDS);
sink.timeout().timeout(chain.writeTimeoutMillis(), MILLISECONDS);
return new Http1Codec(client, streamAllocation, source, sink);
}
}
通过判断不同http协议(http1.1和http/2)来创建不同的HttpCodec对象。
在初始化HttpCodec对象的过程中,就已经通过findConnection方法查找到健康可用的连接对象了,所以我们可以通过StreamAllocation对象的connection方法直接获取到连接对象。
将初始化得到的HttpCodec和连接对象传入到下一拦截器进行处理,在此拦截器,我们就对RealInterceptorChain的几个属性都进行了初始化,用于在最后一个与服务器进行交互的拦截器中使用。
该拦截器主要是与服务器建立连接,从而获取一个可以与服务器端进行连接的连接对象,而实际与服务器进行交互的逻辑则在CallServerInterceptor里。