多项式回归是一种线性回归形式,其中自变量x和因变量y之间的关系被建模为n次多项式。多项式回归拟合x的值与y的相应条件均值之间的非线性关系,表示为E(y | x)
这些基本上用于定义或描述非线性现象,例如:
回归分析的基本目标是根据自变量x的值来模拟因变量y的期望值。在简单回归中,我们使用以下等式 -
y = a + bx + e |
---|
这里y是因变量,a是y截距,b是斜率,e是误差率。
在许多情况下,这种线性模型将无法解决。例如,如果我们在这种情况下根据合成温度分析化学合成的产生,我们使用二次模型
y = a + b1x + b2 ^ 2 + e |
---|
这里y是x的因变量,a是y截距,e是误差率。
通常,我们可以将其建模为第n个值。
y = a + b1x + b2x ^ 2 + … + bnx ^ n |
---|
由于回归函数在未知变量方面是线性的,因此这些模型从估计的角度来看是线性的。
因此,通过最小二乘技术,让我们计算y的响应值。
要获得用于分析多项式回归的数据集,请单击此处。
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
datas = pd.read_csv('data.csv')
datas
将数据集划分为两个组件,即X和yX将包含1到2之间的列.y将包含2列。
X = datas.iloc[:, 1:2].values
y = datas.iloc[:, 2].values
拟合线性回归模型在两个组件上。
# Fitting Linear Regression to the dataset
from sklearn.linear_model import LinearRegression
lin = LinearRegression()
lin.fit(X, y)
将多项式回归模型拟合到两个分量X和y上。
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
poly = PolynomialFeatures(degree = 4)
X_poly = poly.fit_transform(X)
poly.fit(X_poly, y)
lin2 = LinearRegression()
lin2.fit(X_poly, y)
# Visualising the Linear Regression results
plt.scatter(X, y, color = 'blue')
plt.plot(X, lin.predict(X), color = 'red')
plt.title('Linear Regression')
plt.xlabel('Temperature')
plt.ylabel('Pressure')
plt.show()
# Visualising the Polynomial Regression results
plt.scatter(X, y, color = 'blue')
plt.plot(X, lin2.predict(poly.fit_transform(X)), color = 'red')
plt.title('Polynomial Regression')
plt.xlabel('Temperature')
plt.ylabel('Pressure')
plt.show()
# Predicting a new result with Linear Regression
lin.predict(110.0)
# Predicting a new result with Polynomial Regression
lin2.predict(poly.fit_transform(110.0))