最近同事的程序设计过程中用到了Linux的signal机制,从而引发了我对Linux中signal机制的思考。
Signal机制在Linux中是一个非常常用的进程间通信机制,很多人在使用的时候不会考虑该机制是具体如何实现的。signal机制可以被理解成进程的软中断,因此在实时性方面还是相对比较高的。Linux中signal机制的模型可以采用下图进行描述。
每个进程都会采用一个进程控制块对其进行描述,进程控制块中设计了一个signal的位图信息,其中的每位与具体的signal相对应,这与中断机制是保持一致的。
当系统中一个进程A通过signal系统调用向进程B发送signal时,设置进程B的对应signal位图,类似于触发了signal对应中断。发送signal只是“中断”触发的一个过程,具体执行会在两个阶段发生:
综上所述,signal的执行点可以理解成从内核态返回用户态时,在返回时,如果发现待执行进程存在被触发的signal,那么在离开内核态之后(也就是将CPU切换到用户模式),执行用户进程为该signal绑定的signal处理函数,从这一点上看,signal处理函数是在用户进程上下文中执行的。当执行完signal处理函数之后,再返回到用户进程被中断或者system call(软中断或者指令陷阱)打断的地方。
Signal 机制实现的比较灵活,用户进程由于中断或者system call陷入内核之后,将断点信息都保存到了堆栈中,在内核返回用户态时,如果存在被触发的signal,那么直接将待执行的signal处理函数push到堆栈中,在CPU切换到用户模式之后,直接pop堆栈就可以执行signal处理函数并且返回到用户进程了。Signal处理函数应用了进程上下文,并且应用实际的中断模拟了进程的软中断过程。
最近写程序,各种bug各种错,有一回程序莫名退出,没报错,也没产生日志和core文件,貌似正常退出一样。但又不是在程序全部走完后退出,中途莫名退出,这就叫我想到了signal,应该是某些函数错误后发送kill信号给主进程,然后退出。
现在总结下signal各种类型:
执行命令:vim /usr/include/bits/signum.h即可查看
Signal |
Description |
SIGABRT |
由调用abort函数产生,进程非正常退出 |
SIGALRM |
用alarm函数设置的timer超时或setitimer函数设置的interval timer超时 |
SIGBUS |
某种特定的硬件异常,通常由内存访问引起 |
SIGCANCEL |
由Solaris Thread Library内部使用,通常不会使用 |
SIGCHLD |
进程Terminate或Stop的时候,SIGCHLD会发送给它的父进程。缺省情况下该Signal会被忽略 |
SIGCONT |
当被stop的进程恢复运行的时候,自动发送 |
SIGEMT |
和实现相关的硬件异常 |
SIGFPE |
数学相关的异常,如被0除,浮点溢出,等等 |
SIGFREEZE |
Solaris专用,Hiberate或者Suspended时候发送 |
SIGHUP |
发送给具有Terminal的Controlling Process,当terminal被disconnect时候发送 |
SIGILL |
非法指令异常 |
SIGINFO |
BSD signal。由Status Key产生,通常是CTRL+T。发送给所有Foreground Group的进程 |
SIGINT |
由Interrupt Key产生,通常是CTRL+C或者DELETE。发送给所有ForeGround Group的进程 |
SIGIO |
异步IO事件 |
SIGIOT |
实现相关的硬件异常,一般对应SIGABRT |
SIGKILL |
无法处理和忽略。中止某个进程 |
SIGLWP |
由Solaris Thread Libray内部使用 |
SIGPIPE |
在reader中止之后写Pipe的时候发送 |
SIGPOLL |
当某个事件发送给Pollable Device的时候发送 |
SIGPROF |
Setitimer指定的Profiling Interval Timer所产生 |
SIGPWR |
和系统相关。和UPS相关。 |
SIGQUIT |
输入Quit Key的时候(CTRL+\)发送给所有Foreground Group的进程 |
SIGSEGV |
非法内存访问 |
SIGSTKFLT |
Linux专用,数学协处理器的栈异常 |
SIGSTOP |
中止进程。无法处理和忽略。 |
SIGSYS |
非法系统调用 |
SIGTERM |
请求中止进程,kill命令缺省发送 |
SIGTHAW |
Solaris专用,从Suspend恢复时候发送 |
SIGTRAP |
实现相关的硬件异常。一般是调试异常 |
SIGTSTP |
Suspend Key,一般是Ctrl+Z。发送给所有Foreground Group的进程 |
SIGTTIN |
当Background Group的进程尝试读取Terminal的时候发送 |
SIGTTOU |
当Background Group的进程尝试写Terminal的时候发送 |
SIGURG |
当out-of-band data接收的时候可能发送 |
SIGUSR1 |
用户自定义signal 1 |
SIGUSR2 |
用户自定义signal 2 |
SIGVTALRM |
setitimer函数设置的Virtual Interval Timer超时的时候 |
SIGWAITING |
Solaris Thread Library内部实现专用 |
SIGWINCH |
当Terminal的窗口大小改变的时候,发送给Foreground Group的所有进程 |
SIGXCPU |
当CPU时间限制超时的时候 |
SIGXFSZ |
进程超过文件大小限制 |
SIGXRES |
Solaris专用,进程超过资源限制的时候发送 |
signal对应的值,POSIX.1中列出的信号
信号 | 值 | 处理动作 | 发出信号的原因 |
SIGHUP | 1 | A | 终端挂起或者控制进程终止 |
SIGINT | 2 | A | 键盘中断(如break键被按下) |
SIGQUIT | 3 | C | 键盘的退出键被按下 |
SIGILL | 4 | C | 非法指令 |
SIGABRT | 6 | C | 由abort(3)发出的退出指令 |
SIGFPE | 8 | C | 浮点异常 |
SIGKILL | 9 | AEF | Kill信号 |
SIGSEGV | 11 | C | 无效的内存引用 |
SIGPIPE | 13 | A | 管道破裂: 写一个没有读端口的管道 |
SIGALRM | 14 | A | 由alarm(2)发出的信号 |
SIGTERM | 15 | A | 终止信号 |
SIGUSR1 | 30,10,16 | A | 用户自定义信号1 |
SIGUSR2 | 31,12,17 | A | 用户自定义信号2 |
SIGCHLD | 20,17,18 | B | 子进程结束信号 |
SIGCONT | 19,18,25 | 进程继续(曾被停止的进程) | |
SIGSTOP | 17,19,23 | DEF | 终止进程 |
SIGTSTP | 18,20,24 | D | 控制终端(tty)上按下停止键 |
SIGTTIN | 21,21,26 | D | 后台进程企图从控制终端读 |
SIGTTOU | 22,22,27 | D | 后台进程企图从控制终端写 |
没在POSIX.1中列出,而在SUSv2列出
信号 | 值 | 处理动作 | 发出信号的原因 |
SIGBUS | 10,7,10 | C | 总线错误(错误的内存访问) |
SIGPOLL | A | Sys V定义的Pollable事件,与SIGIO同义 | |
SIGPROF | 27,27,29 | A | Profiling定时器到 |
SIGSYS | 12,-,12 | C | 无效的系统调用 (SVID) |
SIGTRAP | 5 | C | 跟踪/断点捕获 |
SIGURG | 16,23,21 | B | Socket出现紧急条件(4.2 BSD) |
SIGVTALRM | 26,26,28 | A | 实际时间报警时钟信号(4.2 BSD) |
SIGXCPU | 24,24,30 | C | 超出设定的CPU时间限制(4.2 BSD) |
SIGXFSZ | 25,25,31 | C | 超出设定的文件大小限制(4.2 BSD) |
对于SIGSYS,SIGXCPU,SIGXFSZ,以及某些机器体系结构下的SIGBUS,Linux缺省的动作是A (terminate),SUSv2 是C (terminate and dump core)。
下面是其它的一些信号
信号 | 值 | 处理动作 | 发出信号的原因 |
SIGIOT | 6 | C | IO捕获指令,与SIGABRT同义 |
SIGEMT | 7,-,7 | ||
SIGSTKFLT | -,16,- | A | 协处理器堆栈错误 |
SIGIO | 23,29,22 | A | 某I/O操作现在可以进行了(4.2 BSD) |
SIGCLD | -,-,18 | A | 与SIGCHLD同义 |
SIGPWR | 29,30,19 | A | 电源故障(System V) |
SIGINFO | 29,-,- | A | 与SIGPWR同义 |
SIGLOST | -,-,- | A | 文件锁丢失 |
SIGWINCH | 28,28,20 | B | 窗口大小改变(4.3 BSD, Sun) |
SIGUNUSED | -,31,- | A | 未使用的信号(will be SIGSYS) |
在这里,- 表示信号没有实现;有三个值给出的含义为,第一个值通常在Alpha和Sparc上有效,中间的值对应i386和ppc以及sh,最后一个值对应mips。信号29在Alpha上为SIGINFO / SIGPWR ,在Sparc上为SIGLOST。
处理动作一项中的字母含义如下
A 缺省的动作是终止进程
B 缺省的动作是忽略此信号
C 缺省的动作是终止进程并进行内核映像转储(dump core)
D 缺省的动作是停止进程
E 信号不能被捕获
F 信号不能被忽略
测试代码:
#include
#include
#include
#include
void when_alarm();
void when_sigint();
void when_sigchld(int);
void when_sigusr1();
void when_sigio();
int main()
{
int childpid;//子程序进程ID号
printf("程序已经开始运行,5秒钟后将接收到时钟信号。/n");
if ((childpid=fork())>0)//父进程
{
signal(SIGALRM,when_alarm); //当接收到SIGALRM信号时,调用when_alarm函数
signal(SIGINT,when_sigint); //当接收到SIGINT信号时,调用when_sigint函数
signal(SIGCHLD,when_sigchld);//当接收到SIGCHLD信号时,调用when_sigchld函数
signal(SIGUSR1,when_sigusr1);//当接收到SIGUSR1信号时,调用when_sigusr1函数
signal(SIGIO,when_sigio);//当接收到SIGIO信号时,调用when_sigio函数
alarm(5); //5秒钟之后产生SIGALRM信号
raise(SIGIO); //向自己发送一个SIGIO信号
pause(); //将父进程暂停下来,等待SIGALRM信号到来
pause(); //将父进程暂停下来,等待SIGUSR1信号到来
pause(); //将父进程暂停下来,等待SIGCHLD信号到来
printf("------此时程序会停下来等待,请按下ctrl+c送出SIGINT信号-------/n");
pause(); //将父进程暂停下来,等待SIGINT信号到来
}
else if(childpid==0) //子进程
{
int timer;
for(timer=7;timer>=0;timer--) //时钟计时5秒产生SIGALRM信号,再过2秒子进程退出,产生SIGCHLD信号
{
if(timer>2)
printf("距离SIGALRM信号到来还有%d秒。/n",timer-2);
if(timer==4)
kill(getppid(),SIGUSR1); //向父进程发送一个SIGUSR1信号
if((timer<=2)&&(timer>0))
printf("子进程还剩%d秒退出,届时会产生SIGCHLD信号。/n",timer);
if(timer==0) //子进程退出,产生SIGCHLD信号
raise(SIGKILL); //子进程给自己发一个结束信号
sleep(1); //每个循环延时1秒钟
}
}
else
printf("fork()函数调用出现错误!/n");
return 0;
}
void when_alarm()
{
printf("5秒钟时间已到,系统接收到了SIGALRM信号!/n");
}
void when_sigint()
{
printf("已经接收到了SIGINT信号,程序将退出!/n");
exit(0);
}
void when_sigchld(int SIGCHLD_num)
{
printf("收到SIGCHLD信号,表明我的子进程已经中止,SIGCHLD信号的数值是:%d。/n",SIGCHLD_num);
}
void when_sigusr1()
{
printf("系统接收到了用户自定义信号SIGUSR1。/n");
}
void when_sigio()
{
printf("系统接收到了SIGIO信号。/n");
}