池化层学习笔记(C++实现)

参考文章:《深度学习笔记5:池化层的实现》

池化层的理解:

池化层是卷积神经网络中常用的操作,属于前馈神经网络的一部分。

主要功能:

1. 降低参数规模,防止过拟合 2. 提高模型鲁棒性(当图像有小的平移时,maxpooling结果不变)

主要方法

3. Max-pooling:最大池化 4. Mean-pooling:平均池化

目标矩阵的尺寸

![300*300](https://img-blog.csdnimg.cn/20190322194222121.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzMzNzMyMzU4,size_16,color_FFFFFF,t_70)

C++代码实现

#include "pch.h"
#include 
#include 
#include 

class MaxPolling {
public:
	// 最大池化函数
	template <typename _Tp>
	_Tp* poll(_Tp* matrix, int matrix_w, int matrix_h, int kernel_size, int stride, bool show) {

		// 池化结果的size
		int result_w = (matrix_w - kernel_size ) / stride + 1, result_h = (matrix_h - kernel_size ) / stride + 1;
		// 申请内存
		_Tp* result = (_Tp*)malloc(sizeof(_Tp)*result_w*result_h);

		int x = 0, y = 0;
		for (int i = 0; i < result_h; i++) {
			for (int j = 0; j < result_w; j++) {
				result[y*result_w + x] = getMax(matrix, matrix_w, matrix_h, kernel_size, j*stride, i*stride);
				x++;
			}
			y++; x = 0;
		}

		if (show) {
			showMatrix(result, result_w, result_h);
		}

		return result;
	}

	template <typename _Tp>
	void showMatrix(_Tp matrix, int matrix_w, int matrix_h) {
		for (int i = 0; i < matrix_h; i++) {
			for (int j = 0; j < matrix_w; j++) {
				std::cout << matrix[i*matrix_w + j] << " ";
			}
			std::cout << std::endl;
		}
	}

	// 取kernel中最大值
	template <typename _Tp>
	_Tp getMax(_Tp* matrix, int matrix_w, int matrix_h, int kernel_size, int x, int y) {
		int max_value = matrix[y*matrix_w + x];
		for (int i = 0; i < kernel_size; i++) {
			for (int j = 0; j < kernel_size; j++) {
				if (max_value < matrix[matrix_w*(y + i) + x + j]) {
					max_value = matrix[matrix_w*(y + i) + x + j];
				}
			}
		}
		return max_value;
	}

	void testMaxPolling() {
		int matrix[36] = { 1,3,1,3,5,1,4,7,5,7,9,12,1,4,6,2,5,8,6,3,9,2,1,5,8,9,2,4,6,8,4,12,54,8,0,23 };
		poll(matrix, 6, 6, 2, 2, true);
	}
};

你可能感兴趣的:(C++,CV,MatrixOperation)