[OI]Tarjin算法整理

Tajin算法由Robert Tarjan提出,他可以在线性时间内帮我们找到有向图中的所有强连通分量。

其实,tarjan算法的基础是DFS。我们准备两个数组Low和Dfn。Low数组是一个标记数组,记录该点所在的强连通子图所在搜索子树的根节点的Dfn值(很绕嘴,往下看你就会明白),Dfn数组记录搜索到该点的时间,也就是第几个搜索这个点的。根据以下几条规则,经过搜索遍历该图(无需回溯)和对栈的操作,我们就可以得到该有向图的强连通分量。

  1. 数组的初始化:当首次搜索到点p时,Dfn与Low数组的值都为到该点的时间。
  2. 堆栈:每搜索到一个点,将它压入栈顶。
  3. 当点p有与点p’相连时,如果此时(时间为dfn[p]时)p’不在栈中,p的low值为两点的low值中较小的一个。
  4. 当点p有与点p’相连时,如果此时(时间为dfn[p]时)p’在栈中,p的low值为p的low值和p’的dfn值中较小的一个。
  5. 每当搜索到一个点经过以上操作后(也就是子树已经全部遍历)的low值等于dfn值,则将它以及在它之上的元素弹出栈。这些出栈的元素组成一个强连通分量。
  6. 继续搜索(或许会更换搜索的起点,因为整个有向图可能分为两个不连通的部分),直到所有点被遍历。

由于每个顶点只访问过一次,每条边也只访问过一次,我们就可以在O(n+m)的时间内求出有向图的强连通分量。但是,这么做的原因是什么呢?

Tarjan算法的操作原理如下:

  1. Tarjan算法基于定理:在任何深度优先搜索中,同一强连通分量内的所有顶点均在同一棵深度优先搜索树中。也就是说,强连通分量一定是有向图的某个深搜树子树。
  2. 可以证明,当一个点既是强连通子图Ⅰ中的点,又是强连通子图Ⅱ中的点,则它是强连通子图Ⅰ∪Ⅱ中的点。
  3. 这样,我们用low值记录该点所在强连通子图对应的搜索子树的根节点的Dfn值。注意,该子树中的元素在栈中一定是相邻的,且根节点在栈中一定位于所有子树元素的最下方。
  4. 强连通分量是由若干个环组成的。所以,当有环形成时(也就是搜索的下一个点已在栈中),我们将这一条路径的low值统一,即这条路径上的点属于同一个强连通分量。
  5. 如果遍历完整个搜索树后某个点的dfn值等于low值,则它是该搜索子树的根。这时,它以上(包括它自己)一直到栈顶的所有元素组成一个强连通分量。

具体算法演示下图所示:

[OI]Tarjin算法整理_第1张图片

[OI]Tarjin算法整理_第2张图片

[OI]Tarjin算法整理_第3张图片

[OI]Tarjin算法整理_第4张图片

代码实现:

 


They Said "Admonish your friends in private, praise them in public."


原文地址:http://ozem.pw/archives/585

你可能感兴趣的:([OI]Tarjin算法整理)