UniquePaths

题目:

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?

UniquePaths_第1张图片

Above is a 3 x 7 grid. How many possible unique paths are there?

Note: m and n will be at most 100.


思想1:

本题可以采用动态规划来解决。由于机器人只能向右或是向下移动,所以对于一个已知的点[i,j],它可由[i-1][j]或是[i][j-1]得到的。设path[i][j]为到达第[i,j]坐标所需要的步数,那么对于path[i][j],可以由两种方式得到path[i-1][j]和path[i][j-1]。所以得到动态规划的状态转移方程path[i][j]=path[i-1][j]+path[i][j-1]。


代码1:

class Solution{
public:
	int uniquePaths(int m, int n)
	{
		vector > path(m, vector(n, 1));

		for (int  i = 1; i < m; i++)
		{
			for (int j = 1; j < n; j++)
			{
				path[i][j] = path[i - 1][j] + path[i][j - 1];
			}
		}
		return path[m - 1][n - 1];
	}
};
对于上述解法,其时间复杂度是O(n^2),空间复杂度是O(m*n),但是由状态方程path[i][j]=path[i-1][j]+path[i][j-1],可知,当前状态,只与path[i-1][j]和path[i][j-1]有关,所以只需要保存两个数组即可。

代码2:

int uniquePaths2(int m, int n)
	{
		if (m > n)
			swap(m, n);
		vector path(m, 1); //为了节省空间采用较小的数
		vector left(m, 1);

		for (int i = 1; i < n; i++)
		{
			int j;
			for (j = 1; j < m; j++)
			{
				path[j] = path[j - 1] + left[j];
			}
			swap(path, left);
		}
		return left[m - 1];
	}

此时所需的空间复杂度降为O(min(m,n)),但是通过观察可知,left中存储的是上一cur中数字,因此可以采用一个vector来存储即可。

代码3:

int uniquePaths3(int m, int n)
	{
		if (m > n)
			swap(m, n);
		vector path(m, 1); //为了节省空间采用较小的数
		for (int i = 1; i < n; i++)
		{
			int j;
			for (j = 1; j < m; j++)
			{
				path[j] = path[j]+ path[j - 1] ;
			}

		}
		return path[m - 1];
此时的空间复杂度为O(min(m,n))

思想2:

除了动态规划,从LeetCode上看到了一种采用数学知识解决问题的方法,由题意可知,如果我们要从[1,1]处,到达[m][n],处,需要向下移动m-1步,向右移动n-1步,总共需移动m+n-2步。由此可知,方法总数等于该m+n-2数的排列。path= (m+n-2)! / [(m-1)!]


代码:

int uniquePathsMath(int m, int n) {
		if (m <= 0 || n <= 0)
			return 0;
		long res=1;
		for (int  i = n; i < m+n-1; i++)
		{
			res = res * i / (i - n + 1);
		}
		return (int)res;
	}

你可能感兴趣的:(LeetCode)